Whakaoti mō r
r = \frac{\sqrt{10990}}{70} \approx 1.497617155
r = -\frac{\sqrt{10990}}{70} \approx -1.497617155
Tohaina
Kua tāruatia ki te papatopenga
3150r^{2}=7065
Whakareatia te 105 ki te 30, ka 3150.
r^{2}=\frac{7065}{3150}
Whakawehea ngā taha e rua ki te 3150.
r^{2}=\frac{157}{70}
Whakahekea te hautanga \frac{7065}{3150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 45.
r=\frac{\sqrt{10990}}{70} r=-\frac{\sqrt{10990}}{70}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3150r^{2}=7065
Whakareatia te 105 ki te 30, ka 3150.
3150r^{2}-7065=0
Tangohia te 7065 mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\times 3150\left(-7065\right)}}{2\times 3150}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3150 mō a, 0 mō b, me -7065 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 3150\left(-7065\right)}}{2\times 3150}
Pūrua 0.
r=\frac{0±\sqrt{-12600\left(-7065\right)}}{2\times 3150}
Whakareatia -4 ki te 3150.
r=\frac{0±\sqrt{89019000}}{2\times 3150}
Whakareatia -12600 ki te -7065.
r=\frac{0±90\sqrt{10990}}{2\times 3150}
Tuhia te pūtakerua o te 89019000.
r=\frac{0±90\sqrt{10990}}{6300}
Whakareatia 2 ki te 3150.
r=\frac{\sqrt{10990}}{70}
Nā, me whakaoti te whārite r=\frac{0±90\sqrt{10990}}{6300} ina he tāpiri te ±.
r=-\frac{\sqrt{10990}}{70}
Nā, me whakaoti te whārite r=\frac{0±90\sqrt{10990}}{6300} ina he tango te ±.
r=\frac{\sqrt{10990}}{70} r=-\frac{\sqrt{10990}}{70}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}