Whakaoti mō x
x = \frac{21 \sqrt{1105}}{221} \approx 3.158698397
x = -\frac{21 \sqrt{1105}}{221} \approx -3.158698397
Graph
Tohaina
Kua tāruatia ki te papatopenga
11025=\left(9x\right)^{2}+\left(32x\right)^{2}
Tātaihia te 105 mā te pū o 2, kia riro ko 11025.
11025=9^{2}x^{2}+\left(32x\right)^{2}
Whakarohaina te \left(9x\right)^{2}.
11025=81x^{2}+\left(32x\right)^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
11025=81x^{2}+32^{2}x^{2}
Whakarohaina te \left(32x\right)^{2}.
11025=81x^{2}+1024x^{2}
Tātaihia te 32 mā te pū o 2, kia riro ko 1024.
11025=1105x^{2}
Pahekotia te 81x^{2} me 1024x^{2}, ka 1105x^{2}.
1105x^{2}=11025
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{11025}{1105}
Whakawehea ngā taha e rua ki te 1105.
x^{2}=\frac{2205}{221}
Whakahekea te hautanga \frac{11025}{1105} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x=\frac{21\sqrt{1105}}{221} x=-\frac{21\sqrt{1105}}{221}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
11025=\left(9x\right)^{2}+\left(32x\right)^{2}
Tātaihia te 105 mā te pū o 2, kia riro ko 11025.
11025=9^{2}x^{2}+\left(32x\right)^{2}
Whakarohaina te \left(9x\right)^{2}.
11025=81x^{2}+\left(32x\right)^{2}
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
11025=81x^{2}+32^{2}x^{2}
Whakarohaina te \left(32x\right)^{2}.
11025=81x^{2}+1024x^{2}
Tātaihia te 32 mā te pū o 2, kia riro ko 1024.
11025=1105x^{2}
Pahekotia te 81x^{2} me 1024x^{2}, ka 1105x^{2}.
1105x^{2}=11025
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1105x^{2}-11025=0
Tangohia te 11025 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 1105\left(-11025\right)}}{2\times 1105}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1105 mō a, 0 mō b, me -11025 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1105\left(-11025\right)}}{2\times 1105}
Pūrua 0.
x=\frac{0±\sqrt{-4420\left(-11025\right)}}{2\times 1105}
Whakareatia -4 ki te 1105.
x=\frac{0±\sqrt{48730500}}{2\times 1105}
Whakareatia -4420 ki te -11025.
x=\frac{0±210\sqrt{1105}}{2\times 1105}
Tuhia te pūtakerua o te 48730500.
x=\frac{0±210\sqrt{1105}}{2210}
Whakareatia 2 ki te 1105.
x=\frac{21\sqrt{1105}}{221}
Nā, me whakaoti te whārite x=\frac{0±210\sqrt{1105}}{2210} ina he tāpiri te ±.
x=-\frac{21\sqrt{1105}}{221}
Nā, me whakaoti te whārite x=\frac{0±210\sqrt{1105}}{2210} ina he tango te ±.
x=\frac{21\sqrt{1105}}{221} x=-\frac{21\sqrt{1105}}{221}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}