Whakaoti mō p
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}\approx 87.736047709+967.315156682i
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}\approx 87.736047709-967.315156682i
Tohaina
Kua tāruatia ki te papatopenga
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Whakareatia te 1044 ki te \frac{1}{1000}, ka \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Whakareatia te 83145 ki te 29815, ka 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Whakareatia te 186 ki te \frac{1}{1000000}, ka \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Tātaihia te 10 mā te pū o -8, kia riro ko \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Whakareatia te 106 ki te \frac{1}{100000000}, ka \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2478968175 ki te 1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p-2478968175=-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Tangohia te 2478968175 mai i ngā taha e rua.
\frac{261}{250}p-2478968175+\frac{9221761611}{20000}p=\frac{5255412531}{2000000}p^{2}
Me tāpiri te \frac{9221761611}{20000}p ki ngā taha e rua.
\frac{9221782491}{20000}p-2478968175=\frac{5255412531}{2000000}p^{2}
Pahekotia te \frac{261}{250}p me \frac{9221761611}{20000}p, ka \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-2478968175-\frac{5255412531}{2000000}p^{2}=0
Tangohia te \frac{5255412531}{2000000}p^{2} mai i ngā taha e rua.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p-2478968175=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\left(\frac{9221782491}{20000}\right)^{2}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{5255412531}{2000000} mō a, \frac{9221782491}{20000} mō b, me -2478968175 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Pūruatia \frac{9221782491}{20000} mā te pūrua i te taurunga me te tauraro o te hautanga.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}+\frac{5255412531}{500000}\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Whakareatia -4 ki te -\frac{5255412531}{2000000}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-\frac{521120016433808037}{20000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Whakareatia \frac{5255412531}{500000} ki te -2478968175.
p=\frac{-\frac{9221782491}{20000}±\sqrt{-\frac{10337359056364846574919}{400000000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Tāpiri \frac{85041272311314165081}{400000000} ki te -\frac{521120016433808037}{20000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{2\left(-\frac{5255412531}{2000000}\right)}
Tuhia te pūtakerua o te -\frac{10337359056364846574919}{400000000}.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}
Whakareatia 2 ki te -\frac{5255412531}{2000000}.
p=\frac{-9221782491+3\sqrt{1148595450707205174991}i}{-\frac{5255412531}{1000000}\times 20000}
Nā, me whakaoti te whārite p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} ina he tāpiri te ±. Tāpiri -\frac{9221782491}{20000} ki te \frac{3i\sqrt{1148595450707205174991}}{20000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Whakawehe \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} ki te -\frac{5255412531}{1000000} mā te whakarea \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} ki te tau huripoki o -\frac{5255412531}{1000000}.
p=\frac{-3\sqrt{1148595450707205174991}i-9221782491}{-\frac{5255412531}{1000000}\times 20000}
Nā, me whakaoti te whārite p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} ina he tango te ±. Tango \frac{3i\sqrt{1148595450707205174991}}{20000} mai i -\frac{9221782491}{20000}.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Whakawehe \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} ki te -\frac{5255412531}{1000000} mā te whakarea \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} ki te tau huripoki o -\frac{5255412531}{1000000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177} p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Kua oti te whārite te whakatau.
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Whakareatia te 1044 ki te \frac{1}{1000}, ka \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Whakareatia te 83145 ki te 29815, ka 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Whakareatia te 186 ki te \frac{1}{1000000}, ka \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Tātaihia te 10 mā te pū o -8, kia riro ko \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Whakareatia te 106 ki te \frac{1}{100000000}, ka \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2478968175 ki te 1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p+\frac{9221761611}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Me tāpiri te \frac{9221761611}{20000}p ki ngā taha e rua.
\frac{9221782491}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Pahekotia te \frac{261}{250}p me \frac{9221761611}{20000}p, ka \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-\frac{5255412531}{2000000}p^{2}=2478968175
Tangohia te \frac{5255412531}{2000000}p^{2} mai i ngā taha e rua.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p=2478968175
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p}{-\frac{5255412531}{2000000}}=\frac{2478968175}{-\frac{5255412531}{2000000}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5255412531}{2000000}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
p^{2}+\frac{\frac{9221782491}{20000}}{-\frac{5255412531}{2000000}}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Mā te whakawehe ki te -\frac{5255412531}{2000000} ka wetekia te whakareanga ki te -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Whakawehe \frac{9221782491}{20000} ki te -\frac{5255412531}{2000000} mā te whakarea \frac{9221782491}{20000} ki te tau huripoki o -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=-\frac{50000000}{53}
Whakawehe 2478968175 ki te -\frac{5255412531}{2000000} mā te whakarea 2478968175 ki te tau huripoki o -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p+\left(-\frac{153696374850}{1751804177}\right)^{2}=-\frac{50000000}{53}+\left(-\frac{153696374850}{1751804177}\right)^{2}
Whakawehea te -\frac{307392749700}{1751804177}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{153696374850}{1751804177}. Nā, tāpiria te pūrua o te -\frac{153696374850}{1751804177} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{50000000}{53}+\frac{23622575642031712522500}{3068817874554647329}
Pūruatia -\frac{153696374850}{1751804177} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{2871488626768012937477500}{3068817874554647329}
Tāpiri -\frac{50000000}{53} ki te \frac{23622575642031712522500}{3068817874554647329} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p-\frac{153696374850}{1751804177}\right)^{2}=-\frac{2871488626768012937477500}{3068817874554647329}
Tauwehea p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{153696374850}{1751804177}\right)^{2}}=\sqrt{-\frac{2871488626768012937477500}{3068817874554647329}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{153696374850}{1751804177}=\frac{50\sqrt{1148595450707205174991}i}{1751804177} p-\frac{153696374850}{1751804177}=-\frac{50\sqrt{1148595450707205174991}i}{1751804177}
Whakarūnātia.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177} p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Me tāpiri \frac{153696374850}{1751804177} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}