Whakaoti mō x
x=-52
x=22
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+30x-110=1034
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+30x-110-1034=0
Tangohia te 1034 mai i ngā taha e rua.
x^{2}+30x-1144=0
Tangohia te 1034 i te -110, ka -1144.
a+b=30 ab=-1144
Hei whakaoti i te whārite, whakatauwehea te x^{2}+30x-1144 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,1144 -2,572 -4,286 -8,143 -11,104 -13,88 -22,52 -26,44
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1144.
-1+1144=1143 -2+572=570 -4+286=282 -8+143=135 -11+104=93 -13+88=75 -22+52=30 -26+44=18
Tātaihia te tapeke mō ia takirua.
a=-22 b=52
Ko te otinga te takirua ka hoatu i te tapeke 30.
\left(x-22\right)\left(x+52\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=22 x=-52
Hei kimi otinga whārite, me whakaoti te x-22=0 me te x+52=0.
x^{2}+30x-110=1034
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+30x-110-1034=0
Tangohia te 1034 mai i ngā taha e rua.
x^{2}+30x-1144=0
Tangohia te 1034 i te -110, ka -1144.
a+b=30 ab=1\left(-1144\right)=-1144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-1144. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,1144 -2,572 -4,286 -8,143 -11,104 -13,88 -22,52 -26,44
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1144.
-1+1144=1143 -2+572=570 -4+286=282 -8+143=135 -11+104=93 -13+88=75 -22+52=30 -26+44=18
Tātaihia te tapeke mō ia takirua.
a=-22 b=52
Ko te otinga te takirua ka hoatu i te tapeke 30.
\left(x^{2}-22x\right)+\left(52x-1144\right)
Tuhia anō te x^{2}+30x-1144 hei \left(x^{2}-22x\right)+\left(52x-1144\right).
x\left(x-22\right)+52\left(x-22\right)
Tauwehea te x i te tuatahi me te 52 i te rōpū tuarua.
\left(x-22\right)\left(x+52\right)
Whakatauwehea atu te kīanga pātahi x-22 mā te whakamahi i te āhuatanga tātai tohatoha.
x=22 x=-52
Hei kimi otinga whārite, me whakaoti te x-22=0 me te x+52=0.
x^{2}+30x-110=1034
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+30x-110-1034=0
Tangohia te 1034 mai i ngā taha e rua.
x^{2}+30x-1144=0
Tangohia te 1034 i te -110, ka -1144.
x=\frac{-30±\sqrt{30^{2}-4\left(-1144\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 30 mō b, me -1144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-1144\right)}}{2}
Pūrua 30.
x=\frac{-30±\sqrt{900+4576}}{2}
Whakareatia -4 ki te -1144.
x=\frac{-30±\sqrt{5476}}{2}
Tāpiri 900 ki te 4576.
x=\frac{-30±74}{2}
Tuhia te pūtakerua o te 5476.
x=\frac{44}{2}
Nā, me whakaoti te whārite x=\frac{-30±74}{2} ina he tāpiri te ±. Tāpiri -30 ki te 74.
x=22
Whakawehe 44 ki te 2.
x=-\frac{104}{2}
Nā, me whakaoti te whārite x=\frac{-30±74}{2} ina he tango te ±. Tango 74 mai i -30.
x=-52
Whakawehe -104 ki te 2.
x=22 x=-52
Kua oti te whārite te whakatau.
x^{2}+30x-110=1034
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+30x=1034+110
Me tāpiri te 110 ki ngā taha e rua.
x^{2}+30x=1144
Tāpirihia te 1034 ki te 110, ka 1144.
x^{2}+30x+15^{2}=1144+15^{2}
Whakawehea te 30, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 15. Nā, tāpiria te pūrua o te 15 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+30x+225=1144+225
Pūrua 15.
x^{2}+30x+225=1369
Tāpiri 1144 ki te 225.
\left(x+15\right)^{2}=1369
Tauwehea x^{2}+30x+225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{1369}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+15=37 x+15=-37
Whakarūnātia.
x=22 x=-52
Me tango 15 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}