Whakaoti mō x (complex solution)
x=\frac{-3+\sqrt{71}i}{8}\approx -0.375+1.053268722i
x=\frac{-\sqrt{71}i-3}{8}\approx -0.375-1.053268722i
Graph
Tohaina
Kua tāruatia ki te papatopenga
1024x^{2}+768x+1280=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-768±\sqrt{768^{2}-4\times 1024\times 1280}}{2\times 1024}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1024 mō a, 768 mō b, me 1280 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-768±\sqrt{589824-4\times 1024\times 1280}}{2\times 1024}
Pūrua 768.
x=\frac{-768±\sqrt{589824-4096\times 1280}}{2\times 1024}
Whakareatia -4 ki te 1024.
x=\frac{-768±\sqrt{589824-5242880}}{2\times 1024}
Whakareatia -4096 ki te 1280.
x=\frac{-768±\sqrt{-4653056}}{2\times 1024}
Tāpiri 589824 ki te -5242880.
x=\frac{-768±256\sqrt{71}i}{2\times 1024}
Tuhia te pūtakerua o te -4653056.
x=\frac{-768±256\sqrt{71}i}{2048}
Whakareatia 2 ki te 1024.
x=\frac{-768+256\sqrt{71}i}{2048}
Nā, me whakaoti te whārite x=\frac{-768±256\sqrt{71}i}{2048} ina he tāpiri te ±. Tāpiri -768 ki te 256i\sqrt{71}.
x=\frac{-3+\sqrt{71}i}{8}
Whakawehe -768+256i\sqrt{71} ki te 2048.
x=\frac{-256\sqrt{71}i-768}{2048}
Nā, me whakaoti te whārite x=\frac{-768±256\sqrt{71}i}{2048} ina he tango te ±. Tango 256i\sqrt{71} mai i -768.
x=\frac{-\sqrt{71}i-3}{8}
Whakawehe -768-256i\sqrt{71} ki te 2048.
x=\frac{-3+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-3}{8}
Kua oti te whārite te whakatau.
1024x^{2}+768x+1280=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
1024x^{2}+768x+1280-1280=-1280
Me tango 1280 mai i ngā taha e rua o te whārite.
1024x^{2}+768x=-1280
Mā te tango i te 1280 i a ia ake anō ka toe ko te 0.
\frac{1024x^{2}+768x}{1024}=-\frac{1280}{1024}
Whakawehea ngā taha e rua ki te 1024.
x^{2}+\frac{768}{1024}x=-\frac{1280}{1024}
Mā te whakawehe ki te 1024 ka wetekia te whakareanga ki te 1024.
x^{2}+\frac{3}{4}x=-\frac{1280}{1024}
Whakahekea te hautanga \frac{768}{1024} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 256.
x^{2}+\frac{3}{4}x=-\frac{5}{4}
Whakahekea te hautanga \frac{-1280}{1024} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 256.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=-\frac{5}{4}+\left(\frac{3}{8}\right)^{2}
Whakawehea te \frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{8}. Nā, tāpiria te pūrua o te \frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{5}{4}+\frac{9}{64}
Pūruatia \frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{71}{64}
Tāpiri -\frac{5}{4} ki te \frac{9}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{8}\right)^{2}=-\frac{71}{64}
Tauwehea x^{2}+\frac{3}{4}x+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{-\frac{71}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{8}=\frac{\sqrt{71}i}{8} x+\frac{3}{8}=-\frac{\sqrt{71}i}{8}
Whakarūnātia.
x=\frac{-3+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-3}{8}
Me tango \frac{3}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}