Whakaoti mō x
x=0
Whakaoti mō x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(102)}
n_{1}\in \mathrm{Z}
Graph
Tohaina
Kua tāruatia ki te papatopenga
102\times 102^{x}-102=11\times 0\times 0\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 102 ki te 102^{x}-1.
102\times 102^{x}-102=0\times 0\times 2
Whakareatia te 11 ki te 0, ka 0.
102\times 102^{x}-102=0\times 2
Whakareatia te 0 ki te 0, ka 0.
102\times 102^{x}-102=0
Whakareatia te 0 ki te 2, ka 0.
102\times 102^{x}=102
Me tāpiri 102 ki ngā taha e rua o te whārite.
102^{x}=1
Whakawehea ngā taha e rua ki te 102.
\log(102^{x})=\log(1)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
x\log(102)=\log(1)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x=\frac{\log(1)}{\log(102)}
Whakawehea ngā taha e rua ki te \log(102).
x=\log_{102}\left(1\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}