Whakaoti mō x
x=\frac{\sqrt{895}}{50}-\frac{1}{2}\approx 0.098331012
x=-\frac{\sqrt{895}}{50}-\frac{1}{2}\approx -1.098331012
Graph
Tohaina
Kua tāruatia ki te papatopenga
1000x\left(1+x-0\times 2\right)=108
Whakareatia te 0 ki te 0, ka 0.
1000x\left(1+x-0\right)=108
Whakareatia te 0 ki te 2, ka 0.
1000x\left(1+x-0\right)-108=0
Tangohia te 108 mai i ngā taha e rua.
1000x\left(x+1\right)-108=0
Whakaraupapatia anō ngā kīanga tau.
1000x^{2}+1000x-108=0
Whakamahia te āhuatanga tohatoha hei whakarea te 1000x ki te x+1.
x=\frac{-1000±\sqrt{1000^{2}-4\times 1000\left(-108\right)}}{2\times 1000}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1000 mō a, 1000 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1000±\sqrt{1000000-4\times 1000\left(-108\right)}}{2\times 1000}
Pūrua 1000.
x=\frac{-1000±\sqrt{1000000-4000\left(-108\right)}}{2\times 1000}
Whakareatia -4 ki te 1000.
x=\frac{-1000±\sqrt{1000000+432000}}{2\times 1000}
Whakareatia -4000 ki te -108.
x=\frac{-1000±\sqrt{1432000}}{2\times 1000}
Tāpiri 1000000 ki te 432000.
x=\frac{-1000±40\sqrt{895}}{2\times 1000}
Tuhia te pūtakerua o te 1432000.
x=\frac{-1000±40\sqrt{895}}{2000}
Whakareatia 2 ki te 1000.
x=\frac{40\sqrt{895}-1000}{2000}
Nā, me whakaoti te whārite x=\frac{-1000±40\sqrt{895}}{2000} ina he tāpiri te ±. Tāpiri -1000 ki te 40\sqrt{895}.
x=\frac{\sqrt{895}}{50}-\frac{1}{2}
Whakawehe -1000+40\sqrt{895} ki te 2000.
x=\frac{-40\sqrt{895}-1000}{2000}
Nā, me whakaoti te whārite x=\frac{-1000±40\sqrt{895}}{2000} ina he tango te ±. Tango 40\sqrt{895} mai i -1000.
x=-\frac{\sqrt{895}}{50}-\frac{1}{2}
Whakawehe -1000-40\sqrt{895} ki te 2000.
x=\frac{\sqrt{895}}{50}-\frac{1}{2} x=-\frac{\sqrt{895}}{50}-\frac{1}{2}
Kua oti te whārite te whakatau.
1000x\left(1+x-0\times 2\right)=108
Whakareatia te 0 ki te 0, ka 0.
1000x\left(1+x-0\right)=108
Whakareatia te 0 ki te 2, ka 0.
1000x\left(x+1\right)=108
Whakaraupapatia anō ngā kīanga tau.
1000x^{2}+1000x=108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000x ki te x+1.
\frac{1000x^{2}+1000x}{1000}=\frac{108}{1000}
Whakawehea ngā taha e rua ki te 1000.
x^{2}+\frac{1000}{1000}x=\frac{108}{1000}
Mā te whakawehe ki te 1000 ka wetekia te whakareanga ki te 1000.
x^{2}+x=\frac{108}{1000}
Whakawehe 1000 ki te 1000.
x^{2}+x=\frac{27}{250}
Whakahekea te hautanga \frac{108}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{27}{250}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{27}{250}+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{179}{500}
Tāpiri \frac{27}{250} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=\frac{179}{500}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{179}{500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{895}}{50} x+\frac{1}{2}=-\frac{\sqrt{895}}{50}
Whakarūnātia.
x=\frac{\sqrt{895}}{50}-\frac{1}{2} x=-\frac{\sqrt{895}}{50}-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}