Whakaoti mō x
x=50
x=80
Graph
Tohaina
Kua tāruatia ki te papatopenga
10000=1300x-10x^{2}-30000
Whakamahia te āhuatanga tuaritanga hei whakarea te x-30 ki te 1000-10x ka whakakotahi i ngā kupu rite.
1300x-10x^{2}-30000=10000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1300x-10x^{2}-30000-10000=0
Tangohia te 10000 mai i ngā taha e rua.
1300x-10x^{2}-40000=0
Tangohia te 10000 i te -30000, ka -40000.
-10x^{2}+1300x-40000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1300±\sqrt{1300^{2}-4\left(-10\right)\left(-40000\right)}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 1300 mō b, me -40000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1300±\sqrt{1690000-4\left(-10\right)\left(-40000\right)}}{2\left(-10\right)}
Pūrua 1300.
x=\frac{-1300±\sqrt{1690000+40\left(-40000\right)}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-1300±\sqrt{1690000-1600000}}{2\left(-10\right)}
Whakareatia 40 ki te -40000.
x=\frac{-1300±\sqrt{90000}}{2\left(-10\right)}
Tāpiri 1690000 ki te -1600000.
x=\frac{-1300±300}{2\left(-10\right)}
Tuhia te pūtakerua o te 90000.
x=\frac{-1300±300}{-20}
Whakareatia 2 ki te -10.
x=-\frac{1000}{-20}
Nā, me whakaoti te whārite x=\frac{-1300±300}{-20} ina he tāpiri te ±. Tāpiri -1300 ki te 300.
x=50
Whakawehe -1000 ki te -20.
x=-\frac{1600}{-20}
Nā, me whakaoti te whārite x=\frac{-1300±300}{-20} ina he tango te ±. Tango 300 mai i -1300.
x=80
Whakawehe -1600 ki te -20.
x=50 x=80
Kua oti te whārite te whakatau.
10000=1300x-10x^{2}-30000
Whakamahia te āhuatanga tuaritanga hei whakarea te x-30 ki te 1000-10x ka whakakotahi i ngā kupu rite.
1300x-10x^{2}-30000=10000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1300x-10x^{2}=10000+30000
Me tāpiri te 30000 ki ngā taha e rua.
1300x-10x^{2}=40000
Tāpirihia te 10000 ki te 30000, ka 40000.
-10x^{2}+1300x=40000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-10x^{2}+1300x}{-10}=\frac{40000}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\frac{1300}{-10}x=\frac{40000}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}-130x=\frac{40000}{-10}
Whakawehe 1300 ki te -10.
x^{2}-130x=-4000
Whakawehe 40000 ki te -10.
x^{2}-130x+\left(-65\right)^{2}=-4000+\left(-65\right)^{2}
Whakawehea te -130, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -65. Nā, tāpiria te pūrua o te -65 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-130x+4225=-4000+4225
Pūrua -65.
x^{2}-130x+4225=225
Tāpiri -4000 ki te 4225.
\left(x-65\right)^{2}=225
Tauwehea x^{2}-130x+4225. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-65\right)^{2}}=\sqrt{225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-65=15 x-65=-15
Whakarūnātia.
x=80 x=50
Me tāpiri 65 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}