Whakaoti mō x
x = \frac{\sqrt{2770}}{50} \approx 1.052615789
x = -\frac{\sqrt{2770}}{50} \approx -1.052615789
Graph
Tohaina
Kua tāruatia ki te papatopenga
1000\left(1+x\right)\left(0+x\right)=1000\left(1+x\right)+108
Whakareatia te 0 ki te 98, ka 0.
1000\left(1+x\right)x=1000\left(1+x\right)+108
Ko te tau i tāpiria he kore ka hua koia tonu.
\left(1000+1000x\right)x=1000\left(1+x\right)+108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000 ki te 1+x.
1000x+1000x^{2}=1000\left(1+x\right)+108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000+1000x ki te x.
1000x+1000x^{2}=1000+1000x+108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000 ki te 1+x.
1000x+1000x^{2}=1108+1000x
Tāpirihia te 1000 ki te 108, ka 1108.
1000x+1000x^{2}-1000x=1108
Tangohia te 1000x mai i ngā taha e rua.
1000x^{2}=1108
Pahekotia te 1000x me -1000x, ka 0.
x^{2}=\frac{1108}{1000}
Whakawehea ngā taha e rua ki te 1000.
x^{2}=\frac{277}{250}
Whakahekea te hautanga \frac{1108}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{\sqrt{2770}}{50} x=-\frac{\sqrt{2770}}{50}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1000\left(1+x\right)\left(0+x\right)=1000\left(1+x\right)+108
Whakareatia te 0 ki te 98, ka 0.
1000\left(1+x\right)x=1000\left(1+x\right)+108
Ko te tau i tāpiria he kore ka hua koia tonu.
\left(1000+1000x\right)x=1000\left(1+x\right)+108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000 ki te 1+x.
1000x+1000x^{2}=1000\left(1+x\right)+108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000+1000x ki te x.
1000x+1000x^{2}=1000+1000x+108
Whakamahia te āhuatanga tohatoha hei whakarea te 1000 ki te 1+x.
1000x+1000x^{2}=1108+1000x
Tāpirihia te 1000 ki te 108, ka 1108.
1000x+1000x^{2}-1108=1000x
Tangohia te 1108 mai i ngā taha e rua.
1000x+1000x^{2}-1108-1000x=0
Tangohia te 1000x mai i ngā taha e rua.
1000x^{2}-1108=0
Pahekotia te 1000x me -1000x, ka 0.
x=\frac{0±\sqrt{0^{2}-4\times 1000\left(-1108\right)}}{2\times 1000}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1000 mō a, 0 mō b, me -1108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1000\left(-1108\right)}}{2\times 1000}
Pūrua 0.
x=\frac{0±\sqrt{-4000\left(-1108\right)}}{2\times 1000}
Whakareatia -4 ki te 1000.
x=\frac{0±\sqrt{4432000}}{2\times 1000}
Whakareatia -4000 ki te -1108.
x=\frac{0±40\sqrt{2770}}{2\times 1000}
Tuhia te pūtakerua o te 4432000.
x=\frac{0±40\sqrt{2770}}{2000}
Whakareatia 2 ki te 1000.
x=\frac{\sqrt{2770}}{50}
Nā, me whakaoti te whārite x=\frac{0±40\sqrt{2770}}{2000} ina he tāpiri te ±.
x=-\frac{\sqrt{2770}}{50}
Nā, me whakaoti te whārite x=\frac{0±40\sqrt{2770}}{2000} ina he tango te ±.
x=\frac{\sqrt{2770}}{50} x=-\frac{\sqrt{2770}}{50}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}