Whakaoti mō x
x=\frac{\sqrt{2369}-49}{16}\approx -0.020476619
x=\frac{-\sqrt{2369}-49}{16}\approx -6.104523381
Graph
Tohaina
Kua tāruatia ki te papatopenga
1000x^{2}+6125x+125=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6125±\sqrt{6125^{2}-4\times 1000\times 125}}{2\times 1000}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1000 mō a, 6125 mō b, me 125 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6125±\sqrt{37515625-4\times 1000\times 125}}{2\times 1000}
Pūrua 6125.
x=\frac{-6125±\sqrt{37515625-4000\times 125}}{2\times 1000}
Whakareatia -4 ki te 1000.
x=\frac{-6125±\sqrt{37515625-500000}}{2\times 1000}
Whakareatia -4000 ki te 125.
x=\frac{-6125±\sqrt{37015625}}{2\times 1000}
Tāpiri 37515625 ki te -500000.
x=\frac{-6125±125\sqrt{2369}}{2\times 1000}
Tuhia te pūtakerua o te 37015625.
x=\frac{-6125±125\sqrt{2369}}{2000}
Whakareatia 2 ki te 1000.
x=\frac{125\sqrt{2369}-6125}{2000}
Nā, me whakaoti te whārite x=\frac{-6125±125\sqrt{2369}}{2000} ina he tāpiri te ±. Tāpiri -6125 ki te 125\sqrt{2369}.
x=\frac{\sqrt{2369}-49}{16}
Whakawehe -6125+125\sqrt{2369} ki te 2000.
x=\frac{-125\sqrt{2369}-6125}{2000}
Nā, me whakaoti te whārite x=\frac{-6125±125\sqrt{2369}}{2000} ina he tango te ±. Tango 125\sqrt{2369} mai i -6125.
x=\frac{-\sqrt{2369}-49}{16}
Whakawehe -6125-125\sqrt{2369} ki te 2000.
x=\frac{\sqrt{2369}-49}{16} x=\frac{-\sqrt{2369}-49}{16}
Kua oti te whārite te whakatau.
1000x^{2}+6125x+125=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
1000x^{2}+6125x+125-125=-125
Me tango 125 mai i ngā taha e rua o te whārite.
1000x^{2}+6125x=-125
Mā te tango i te 125 i a ia ake anō ka toe ko te 0.
\frac{1000x^{2}+6125x}{1000}=-\frac{125}{1000}
Whakawehea ngā taha e rua ki te 1000.
x^{2}+\frac{6125}{1000}x=-\frac{125}{1000}
Mā te whakawehe ki te 1000 ka wetekia te whakareanga ki te 1000.
x^{2}+\frac{49}{8}x=-\frac{125}{1000}
Whakahekea te hautanga \frac{6125}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 125.
x^{2}+\frac{49}{8}x=-\frac{1}{8}
Whakahekea te hautanga \frac{-125}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 125.
x^{2}+\frac{49}{8}x+\left(\frac{49}{16}\right)^{2}=-\frac{1}{8}+\left(\frac{49}{16}\right)^{2}
Whakawehea te \frac{49}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{49}{16}. Nā, tāpiria te pūrua o te \frac{49}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{49}{8}x+\frac{2401}{256}=-\frac{1}{8}+\frac{2401}{256}
Pūruatia \frac{49}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{49}{8}x+\frac{2401}{256}=\frac{2369}{256}
Tāpiri -\frac{1}{8} ki te \frac{2401}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{49}{16}\right)^{2}=\frac{2369}{256}
Tauwehea x^{2}+\frac{49}{8}x+\frac{2401}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{16}\right)^{2}}=\sqrt{\frac{2369}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{49}{16}=\frac{\sqrt{2369}}{16} x+\frac{49}{16}=-\frac{\sqrt{2369}}{16}
Whakarūnātia.
x=\frac{\sqrt{2369}-49}{16} x=\frac{-\sqrt{2369}-49}{16}
Me tango \frac{49}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}