Whakaoti mō x
x=5000
Graph
Tohaina
Kua tāruatia ki te papatopenga
1000\left(1+0\times 6\right)^{-1}+4000\left(1+0\times 0\times 6\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 0, ka 0.
1000\left(1+0\right)^{-1}+4000\left(1+0\times 0\times 6\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 6, ka 0.
1000\times 1^{-1}+4000\left(1+0\times 0\times 6\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Tāpirihia te 1 ki te 0, ka 1.
1000\times 1+4000\left(1+0\times 0\times 6\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Tātaihia te 1 mā te pū o -1, kia riro ko 1.
1000+4000\left(1+0\times 0\times 6\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 1000 ki te 1, ka 1000.
1000+4000\left(1+0\times 6\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 0, ka 0.
1000+4000\left(1+0\right)^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 6, ka 0.
1000+4000\times 1^{-3}-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Tāpirihia te 1 ki te 0, ka 1.
1000+4000\times 1-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
1000+4000-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 4000 ki te 1, ka 4000.
5000-10000\left(1+0\times 0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Tāpirihia te 1000 ki te 4000, ka 5000.
5000-10000\left(1+0\times 6\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 0, ka 0.
5000-10000\left(1+0\right)^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 6, ka 0.
5000-10000\times 1^{-7}+x\left(1+0\times 0\times 6\right)^{-8}=0
Tāpirihia te 1 ki te 0, ka 1.
5000-10000\times 1+x\left(1+0\times 0\times 6\right)^{-8}=0
Tātaihia te 1 mā te pū o -7, kia riro ko 1.
5000-10000+x\left(1+0\times 0\times 6\right)^{-8}=0
Whakareatia te 10000 ki te 1, ka 10000.
-5000+x\left(1+0\times 0\times 6\right)^{-8}=0
Tangohia te 10000 i te 5000, ka -5000.
-5000+x\left(1+0\times 6\right)^{-8}=0
Whakareatia te 0 ki te 0, ka 0.
-5000+x\left(1+0\right)^{-8}=0
Whakareatia te 0 ki te 6, ka 0.
-5000+x\times 1^{-8}=0
Tāpirihia te 1 ki te 0, ka 1.
-5000+x\times 1=0
Tātaihia te 1 mā te pū o -8, kia riro ko 1.
x\times 1=5000
Me tāpiri te 5000 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=5000
Whakaraupapatia anō ngā kīanga tau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}