Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1000000+p^{2}=100
Tātaihia te 1000 mā te pū o 2, kia riro ko 1000000.
p^{2}=100-1000000
Tangohia te 1000000 mai i ngā taha e rua.
p^{2}=-999900
Tangohia te 1000000 i te 100, ka -999900.
p=30\sqrt{1111}i p=-30\sqrt{1111}i
Kua oti te whārite te whakatau.
1000000+p^{2}=100
Tātaihia te 1000 mā te pū o 2, kia riro ko 1000000.
1000000+p^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
999900+p^{2}=0
Tangohia te 100 i te 1000000, ka 999900.
p^{2}+999900=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\times 999900}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 999900 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 999900}}{2}
Pūrua 0.
p=\frac{0±\sqrt{-3999600}}{2}
Whakareatia -4 ki te 999900.
p=\frac{0±60\sqrt{1111}i}{2}
Tuhia te pūtakerua o te -3999600.
p=30\sqrt{1111}i
Nā, me whakaoti te whārite p=\frac{0±60\sqrt{1111}i}{2} ina he tāpiri te ±.
p=-30\sqrt{1111}i
Nā, me whakaoti te whārite p=\frac{0±60\sqrt{1111}i}{2} ina he tango te ±.
p=30\sqrt{1111}i p=-30\sqrt{1111}i
Kua oti te whārite te whakatau.