Whakaoti mō x
x = \frac{13 \sqrt{2}}{5} \approx 3.676955262
x = -\frac{13 \sqrt{2}}{5} \approx -3.676955262
Graph
Tohaina
Kua tāruatia ki te papatopenga
100\left(0\times 8+x\right)^{2}=1352
Whakareatia te 0\times 8+x ki te 0\times 8+x, ka \left(0\times 8+x\right)^{2}.
100\left(0+x\right)^{2}=1352
Whakareatia te 0 ki te 8, ka 0.
100x^{2}=1352
Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{1352}{100}
Whakawehea ngā taha e rua ki te 100.
x^{2}=\frac{338}{25}
Whakahekea te hautanga \frac{1352}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{13\sqrt{2}}{5} x=-\frac{13\sqrt{2}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
100\left(0\times 8+x\right)^{2}=1352
Whakareatia te 0\times 8+x ki te 0\times 8+x, ka \left(0\times 8+x\right)^{2}.
100\left(0+x\right)^{2}=1352
Whakareatia te 0 ki te 8, ka 0.
100x^{2}=1352
Ko te tau i tāpiria he kore ka hua koia tonu.
100x^{2}-1352=0
Tangohia te 1352 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 100\left(-1352\right)}}{2\times 100}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 100 mō a, 0 mō b, me -1352 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 100\left(-1352\right)}}{2\times 100}
Pūrua 0.
x=\frac{0±\sqrt{-400\left(-1352\right)}}{2\times 100}
Whakareatia -4 ki te 100.
x=\frac{0±\sqrt{540800}}{2\times 100}
Whakareatia -400 ki te -1352.
x=\frac{0±520\sqrt{2}}{2\times 100}
Tuhia te pūtakerua o te 540800.
x=\frac{0±520\sqrt{2}}{200}
Whakareatia 2 ki te 100.
x=\frac{13\sqrt{2}}{5}
Nā, me whakaoti te whārite x=\frac{0±520\sqrt{2}}{200} ina he tāpiri te ±.
x=-\frac{13\sqrt{2}}{5}
Nā, me whakaoti te whārite x=\frac{0±520\sqrt{2}}{200} ina he tango te ±.
x=\frac{13\sqrt{2}}{5} x=-\frac{13\sqrt{2}}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}