Whakaoti mō x
x=150
Graph
Tohaina
Kua tāruatia ki te papatopenga
100+0.9x-90=50+0.95\left(x-50\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 0.9 ki te x-100.
10+0.9x=50+0.95\left(x-50\right)
Tangohia te 90 i te 100, ka 10.
10+0.9x=50+0.95x-47.5
Whakamahia te āhuatanga tohatoha hei whakarea te 0.95 ki te x-50.
10+0.9x=2.5+0.95x
Tangohia te 47.5 i te 50, ka 2.5.
10+0.9x-0.95x=2.5
Tangohia te 0.95x mai i ngā taha e rua.
10-0.05x=2.5
Pahekotia te 0.9x me -0.95x, ka -0.05x.
-0.05x=2.5-10
Tangohia te 10 mai i ngā taha e rua.
-0.05x=-7.5
Tangohia te 10 i te 2.5, ka -7.5.
x=\frac{-7.5}{-0.05}
Whakawehea ngā taha e rua ki te -0.05.
x=\frac{-750}{-5}
Whakarohaina te \frac{-7.5}{-0.05} mā te whakarea i te taurunga me te tauraro ki te 100.
x=150
Whakawehea te -750 ki te -5, kia riro ko 150.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}