Whakaoti mō x
x=\frac{3}{10}=0.3
x=\frac{3}{5}=0.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
100x^{2}-90x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 100\times 18}}{2\times 100}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 100 mō a, -90 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 100\times 18}}{2\times 100}
Pūrua -90.
x=\frac{-\left(-90\right)±\sqrt{8100-400\times 18}}{2\times 100}
Whakareatia -4 ki te 100.
x=\frac{-\left(-90\right)±\sqrt{8100-7200}}{2\times 100}
Whakareatia -400 ki te 18.
x=\frac{-\left(-90\right)±\sqrt{900}}{2\times 100}
Tāpiri 8100 ki te -7200.
x=\frac{-\left(-90\right)±30}{2\times 100}
Tuhia te pūtakerua o te 900.
x=\frac{90±30}{2\times 100}
Ko te tauaro o -90 ko 90.
x=\frac{90±30}{200}
Whakareatia 2 ki te 100.
x=\frac{120}{200}
Nā, me whakaoti te whārite x=\frac{90±30}{200} ina he tāpiri te ±. Tāpiri 90 ki te 30.
x=\frac{3}{5}
Whakahekea te hautanga \frac{120}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
x=\frac{60}{200}
Nā, me whakaoti te whārite x=\frac{90±30}{200} ina he tango te ±. Tango 30 mai i 90.
x=\frac{3}{10}
Whakahekea te hautanga \frac{60}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x=\frac{3}{5} x=\frac{3}{10}
Kua oti te whārite te whakatau.
100x^{2}-90x+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
100x^{2}-90x+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
100x^{2}-90x=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
\frac{100x^{2}-90x}{100}=-\frac{18}{100}
Whakawehea ngā taha e rua ki te 100.
x^{2}+\left(-\frac{90}{100}\right)x=-\frac{18}{100}
Mā te whakawehe ki te 100 ka wetekia te whakareanga ki te 100.
x^{2}-\frac{9}{10}x=-\frac{18}{100}
Whakahekea te hautanga \frac{-90}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x^{2}-\frac{9}{10}x=-\frac{9}{50}
Whakahekea te hautanga \frac{-18}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{9}{10}x+\left(-\frac{9}{20}\right)^{2}=-\frac{9}{50}+\left(-\frac{9}{20}\right)^{2}
Whakawehea te -\frac{9}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{20}. Nā, tāpiria te pūrua o te -\frac{9}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{10}x+\frac{81}{400}=-\frac{9}{50}+\frac{81}{400}
Pūruatia -\frac{9}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{10}x+\frac{81}{400}=\frac{9}{400}
Tāpiri -\frac{9}{50} ki te \frac{81}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{20}\right)^{2}=\frac{9}{400}
Tauwehea x^{2}-\frac{9}{10}x+\frac{81}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{20}\right)^{2}}=\sqrt{\frac{9}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{20}=\frac{3}{20} x-\frac{9}{20}=-\frac{3}{20}
Whakarūnātia.
x=\frac{3}{5} x=\frac{3}{10}
Me tāpiri \frac{9}{20} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}