Whakaoti mō x (complex solution)
x=\frac{\sqrt{47}i}{20}+\frac{1}{4}\approx 0.25+0.34278273i
x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}\approx 0.25-0.34278273i
Graph
Tohaina
Kua tāruatia ki te papatopenga
100x^{2}-50x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 100\times 18}}{2\times 100}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 100 mō a, -50 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 100\times 18}}{2\times 100}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500-400\times 18}}{2\times 100}
Whakareatia -4 ki te 100.
x=\frac{-\left(-50\right)±\sqrt{2500-7200}}{2\times 100}
Whakareatia -400 ki te 18.
x=\frac{-\left(-50\right)±\sqrt{-4700}}{2\times 100}
Tāpiri 2500 ki te -7200.
x=\frac{-\left(-50\right)±10\sqrt{47}i}{2\times 100}
Tuhia te pūtakerua o te -4700.
x=\frac{50±10\sqrt{47}i}{2\times 100}
Ko te tauaro o -50 ko 50.
x=\frac{50±10\sqrt{47}i}{200}
Whakareatia 2 ki te 100.
x=\frac{50+10\sqrt{47}i}{200}
Nā, me whakaoti te whārite x=\frac{50±10\sqrt{47}i}{200} ina he tāpiri te ±. Tāpiri 50 ki te 10i\sqrt{47}.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4}
Whakawehe 50+10i\sqrt{47} ki te 200.
x=\frac{-10\sqrt{47}i+50}{200}
Nā, me whakaoti te whārite x=\frac{50±10\sqrt{47}i}{200} ina he tango te ±. Tango 10i\sqrt{47} mai i 50.
x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
Whakawehe 50-10i\sqrt{47} ki te 200.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
Kua oti te whārite te whakatau.
100x^{2}-50x+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
100x^{2}-50x+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
100x^{2}-50x=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
\frac{100x^{2}-50x}{100}=-\frac{18}{100}
Whakawehea ngā taha e rua ki te 100.
x^{2}+\left(-\frac{50}{100}\right)x=-\frac{18}{100}
Mā te whakawehe ki te 100 ka wetekia te whakareanga ki te 100.
x^{2}-\frac{1}{2}x=-\frac{18}{100}
Whakahekea te hautanga \frac{-50}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 50.
x^{2}-\frac{1}{2}x=-\frac{9}{50}
Whakahekea te hautanga \frac{-18}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{9}{50}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{9}{50}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{47}{400}
Tāpiri -\frac{9}{50} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=-\frac{47}{400}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{47}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{47}i}{20} x-\frac{1}{4}=-\frac{\sqrt{47}i}{20}
Whakarūnātia.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}