Whakaoti mō x
x=-2
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-x-6=0
Whakawehea ngā taha e rua ki te 100.
a+b=-1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Tuhia anō te x^{2}-x-6 hei \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+2=0.
100x^{2}-100x-600=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 100\left(-600\right)}}{2\times 100}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 100 mō a, -100 mō b, me -600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 100\left(-600\right)}}{2\times 100}
Pūrua -100.
x=\frac{-\left(-100\right)±\sqrt{10000-400\left(-600\right)}}{2\times 100}
Whakareatia -4 ki te 100.
x=\frac{-\left(-100\right)±\sqrt{10000+240000}}{2\times 100}
Whakareatia -400 ki te -600.
x=\frac{-\left(-100\right)±\sqrt{250000}}{2\times 100}
Tāpiri 10000 ki te 240000.
x=\frac{-\left(-100\right)±500}{2\times 100}
Tuhia te pūtakerua o te 250000.
x=\frac{100±500}{2\times 100}
Ko te tauaro o -100 ko 100.
x=\frac{100±500}{200}
Whakareatia 2 ki te 100.
x=\frac{600}{200}
Nā, me whakaoti te whārite x=\frac{100±500}{200} ina he tāpiri te ±. Tāpiri 100 ki te 500.
x=3
Whakawehe 600 ki te 200.
x=-\frac{400}{200}
Nā, me whakaoti te whārite x=\frac{100±500}{200} ina he tango te ±. Tango 500 mai i 100.
x=-2
Whakawehe -400 ki te 200.
x=3 x=-2
Kua oti te whārite te whakatau.
100x^{2}-100x-600=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
100x^{2}-100x-600-\left(-600\right)=-\left(-600\right)
Me tāpiri 600 ki ngā taha e rua o te whārite.
100x^{2}-100x=-\left(-600\right)
Mā te tango i te -600 i a ia ake anō ka toe ko te 0.
100x^{2}-100x=600
Tango -600 mai i 0.
\frac{100x^{2}-100x}{100}=\frac{600}{100}
Whakawehea ngā taha e rua ki te 100.
x^{2}+\left(-\frac{100}{100}\right)x=\frac{600}{100}
Mā te whakawehe ki te 100 ka wetekia te whakareanga ki te 100.
x^{2}-x=\frac{600}{100}
Whakawehe -100 ki te 100.
x^{2}-x=6
Whakawehe 600 ki te 100.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
x=3 x=-2
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}