Whakaoti mō x
x=\frac{9}{10}=0.9
x=-\frac{9}{10}=-0.9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\frac{81}{100}
Whakawehea ngā taha e rua ki te 100.
x^{2}-\frac{81}{100}=0
Tangohia te \frac{81}{100} mai i ngā taha e rua.
100x^{2}-81=0
Me whakarea ngā taha e rua ki te 100.
\left(10x-9\right)\left(10x+9\right)=0
Whakaarohia te 100x^{2}-81. Tuhia anō te 100x^{2}-81 hei \left(10x\right)^{2}-9^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{9}{10} x=-\frac{9}{10}
Hei kimi otinga whārite, me whakaoti te 10x-9=0 me te 10x+9=0.
x^{2}=\frac{81}{100}
Whakawehea ngā taha e rua ki te 100.
x=\frac{9}{10} x=-\frac{9}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{81}{100}
Whakawehea ngā taha e rua ki te 100.
x^{2}-\frac{81}{100}=0
Tangohia te \frac{81}{100} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{100}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{81}{100} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{81}{100}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{\frac{81}{25}}}{2}
Whakareatia -4 ki te -\frac{81}{100}.
x=\frac{0±\frac{9}{5}}{2}
Tuhia te pūtakerua o te \frac{81}{25}.
x=\frac{9}{10}
Nā, me whakaoti te whārite x=\frac{0±\frac{9}{5}}{2} ina he tāpiri te ±.
x=-\frac{9}{10}
Nā, me whakaoti te whārite x=\frac{0±\frac{9}{5}}{2} ina he tango te ±.
x=\frac{9}{10} x=-\frac{9}{10}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}