Aromātai
\frac{1061416090100}{10510100501}\approx 100.990099
Tauwehe
\frac{2 ^ {2} \cdot 5 ^ {2} \cdot 2549 \cdot 4164049}{101 ^ {5}} = 100\frac{10406040000}{10510100501} = 100.99009900038634
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
100 ( 1 - \frac { 1 } { 101 ^ { 5 } } ) + \frac { 100 } { 101 }
Tohaina
Kua tāruatia ki te papatopenga
100\left(1-\frac{1}{10510100501}\right)+\frac{100}{101}
Tātaihia te 101 mā te pū o 5, kia riro ko 10510100501.
100\left(\frac{10510100501}{10510100501}-\frac{1}{10510100501}\right)+\frac{100}{101}
Me tahuri te 1 ki te hautau \frac{10510100501}{10510100501}.
100\times \frac{10510100501-1}{10510100501}+\frac{100}{101}
Tā te mea he rite te tauraro o \frac{10510100501}{10510100501} me \frac{1}{10510100501}, me tango rāua mā te tango i ō raua taurunga.
100\times \frac{10510100500}{10510100501}+\frac{100}{101}
Tangohia te 1 i te 10510100501, ka 10510100500.
\frac{100\times 10510100500}{10510100501}+\frac{100}{101}
Tuhia te 100\times \frac{10510100500}{10510100501} hei hautanga kotahi.
\frac{1051010050000}{10510100501}+\frac{100}{101}
Whakareatia te 100 ki te 10510100500, ka 1051010050000.
\frac{1051010050000}{10510100501}+\frac{10406040100}{10510100501}
Ko te maha noa iti rawa atu o 10510100501 me 101 ko 10510100501. Me tahuri \frac{1051010050000}{10510100501} me \frac{100}{101} ki te hautau me te tautūnga 10510100501.
\frac{1051010050000+10406040100}{10510100501}
Tā te mea he rite te tauraro o \frac{1051010050000}{10510100501} me \frac{10406040100}{10510100501}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1061416090100}{10510100501}
Tāpirihia te 1051010050000 ki te 10406040100, ka 1061416090100.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}