100 \times ( 1 + 20 \% ) =
Aromātai
120
Tauwehe
2^{3}\times 3\times 5
Tohaina
Kua tāruatia ki te papatopenga
100\left(1+\frac{1}{5}\right)
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
100\left(\frac{5}{5}+\frac{1}{5}\right)
Me tahuri te 1 ki te hautau \frac{5}{5}.
100\times \frac{5+1}{5}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
100\times \frac{6}{5}
Tāpirihia te 5 ki te 1, ka 6.
\frac{100\times 6}{5}
Tuhia te 100\times \frac{6}{5} hei hautanga kotahi.
\frac{600}{5}
Whakareatia te 100 ki te 6, ka 600.
120
Whakawehea te 600 ki te 5, kia riro ko 120.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}