100 \times ( 1 + \frac { 5 \% } { 12 } ) ^ { 12 } =
Aromātai
\frac{38388797722185519065061084481}{365203474360565760000000000}\approx 105.116189788
Tauwehe
\frac{241 ^ {12}}{2 ^ {46} \cdot 3 ^ {12} \cdot 5 ^ {10}} = 105\frac{4.243291432611261 \times 10^{25}}{3.6520347436056575 \times 10^{26}} = 105.11618978817332
Tohaina
Kua tāruatia ki te papatopenga
100\left(1+\frac{5}{100\times 12}\right)^{12}
Tuhia te \frac{\frac{5}{100}}{12} hei hautanga kotahi.
100\left(1+\frac{5}{1200}\right)^{12}
Whakareatia te 100 ki te 12, ka 1200.
100\left(1+\frac{1}{240}\right)^{12}
Whakahekea te hautanga \frac{5}{1200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
100\times \left(\frac{241}{240}\right)^{12}
Tāpirihia te 1 ki te \frac{1}{240}, ka \frac{241}{240}.
100\times \frac{38388797722185519065061084481}{36520347436056576000000000000}
Tātaihia te \frac{241}{240} mā te pū o 12, kia riro ko \frac{38388797722185519065061084481}{36520347436056576000000000000}.
\frac{38388797722185519065061084481}{365203474360565760000000000}
Whakareatia te 100 ki te \frac{38388797722185519065061084481}{36520347436056576000000000000}, ka \frac{38388797722185519065061084481}{365203474360565760000000000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}