Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10000+100+8=3p^{2}-190+11
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
10100+8=3p^{2}-190+11
Tāpirihia te 10000 ki te 100, ka 10100.
10108=3p^{2}-190+11
Tāpirihia te 10100 ki te 8, ka 10108.
10108=3p^{2}-179
Tāpirihia te -190 ki te 11, ka -179.
3p^{2}-179=10108
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3p^{2}=10108+179
Me tāpiri te 179 ki ngā taha e rua.
3p^{2}=10287
Tāpirihia te 10108 ki te 179, ka 10287.
p^{2}=\frac{10287}{3}
Whakawehea ngā taha e rua ki te 3.
p^{2}=3429
Whakawehea te 10287 ki te 3, kia riro ko 3429.
p=3\sqrt{381} p=-3\sqrt{381}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
10000+100+8=3p^{2}-190+11
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
10100+8=3p^{2}-190+11
Tāpirihia te 10000 ki te 100, ka 10100.
10108=3p^{2}-190+11
Tāpirihia te 10100 ki te 8, ka 10108.
10108=3p^{2}-179
Tāpirihia te -190 ki te 11, ka -179.
3p^{2}-179=10108
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3p^{2}-179-10108=0
Tangohia te 10108 mai i ngā taha e rua.
3p^{2}-10287=0
Tangohia te 10108 i te -179, ka -10287.
p=\frac{0±\sqrt{0^{2}-4\times 3\left(-10287\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -10287 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 3\left(-10287\right)}}{2\times 3}
Pūrua 0.
p=\frac{0±\sqrt{-12\left(-10287\right)}}{2\times 3}
Whakareatia -4 ki te 3.
p=\frac{0±\sqrt{123444}}{2\times 3}
Whakareatia -12 ki te -10287.
p=\frac{0±18\sqrt{381}}{2\times 3}
Tuhia te pūtakerua o te 123444.
p=\frac{0±18\sqrt{381}}{6}
Whakareatia 2 ki te 3.
p=3\sqrt{381}
Nā, me whakaoti te whārite p=\frac{0±18\sqrt{381}}{6} ina he tāpiri te ±.
p=-3\sqrt{381}
Nā, me whakaoti te whārite p=\frac{0±18\sqrt{381}}{6} ina he tango te ±.
p=3\sqrt{381} p=-3\sqrt{381}
Kua oti te whārite te whakatau.