Whakaoti mō t
t = \frac{50 \sqrt{2} - 10}{49} \approx 1.238993431
t=\frac{-50\sqrt{2}-10}{49}\approx -1.647156696
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
100 = 20 t + \frac { 1 } { 2 } \times 98 t ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
100=20t+49t^{2}
Whakareatia te \frac{1}{2} ki te 98, ka 49.
20t+49t^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
20t+49t^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
49t^{2}+20t-100=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-20±\sqrt{20^{2}-4\times 49\left(-100\right)}}{2\times 49}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 49 mō a, 20 mō b, me -100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\times 49\left(-100\right)}}{2\times 49}
Pūrua 20.
t=\frac{-20±\sqrt{400-196\left(-100\right)}}{2\times 49}
Whakareatia -4 ki te 49.
t=\frac{-20±\sqrt{400+19600}}{2\times 49}
Whakareatia -196 ki te -100.
t=\frac{-20±\sqrt{20000}}{2\times 49}
Tāpiri 400 ki te 19600.
t=\frac{-20±100\sqrt{2}}{2\times 49}
Tuhia te pūtakerua o te 20000.
t=\frac{-20±100\sqrt{2}}{98}
Whakareatia 2 ki te 49.
t=\frac{100\sqrt{2}-20}{98}
Nā, me whakaoti te whārite t=\frac{-20±100\sqrt{2}}{98} ina he tāpiri te ±. Tāpiri -20 ki te 100\sqrt{2}.
t=\frac{50\sqrt{2}-10}{49}
Whakawehe -20+100\sqrt{2} ki te 98.
t=\frac{-100\sqrt{2}-20}{98}
Nā, me whakaoti te whārite t=\frac{-20±100\sqrt{2}}{98} ina he tango te ±. Tango 100\sqrt{2} mai i -20.
t=\frac{-50\sqrt{2}-10}{49}
Whakawehe -20-100\sqrt{2} ki te 98.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Kua oti te whārite te whakatau.
100=20t+49t^{2}
Whakareatia te \frac{1}{2} ki te 98, ka 49.
20t+49t^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49t^{2}+20t=100
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{49t^{2}+20t}{49}=\frac{100}{49}
Whakawehea ngā taha e rua ki te 49.
t^{2}+\frac{20}{49}t=\frac{100}{49}
Mā te whakawehe ki te 49 ka wetekia te whakareanga ki te 49.
t^{2}+\frac{20}{49}t+\left(\frac{10}{49}\right)^{2}=\frac{100}{49}+\left(\frac{10}{49}\right)^{2}
Whakawehea te \frac{20}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{10}{49}. Nā, tāpiria te pūrua o te \frac{10}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{100}{49}+\frac{100}{2401}
Pūruatia \frac{10}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{5000}{2401}
Tāpiri \frac{100}{49} ki te \frac{100}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t+\frac{10}{49}\right)^{2}=\frac{5000}{2401}
Tauwehea t^{2}+\frac{20}{49}t+\frac{100}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{10}{49}\right)^{2}}=\sqrt{\frac{5000}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{10}{49}=\frac{50\sqrt{2}}{49} t+\frac{10}{49}=-\frac{50\sqrt{2}}{49}
Whakarūnātia.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
Me tango \frac{10}{49} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}