Whakaoti mō F
F=-\frac{309F_{1}}{500}-\frac{309F_{2}}{500}+100
Whakaoti mō F_1
F_{1}=-\frac{500F}{309}-F_{2}+\frac{50000}{309}
Tohaina
Kua tāruatia ki te papatopenga
F+F_{1}\times 0.618+F_{2}\times 0.618=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
F+F_{2}\times 0.618=100-F_{1}\times 0.618
Tangohia te F_{1}\times 0.618 mai i ngā taha e rua.
F=100-F_{1}\times 0.618-F_{2}\times 0.618
Tangohia te F_{2}\times 0.618 mai i ngā taha e rua.
F=100-0.618F_{1}-F_{2}\times 0.618
Whakareatia te -1 ki te 0.618, ka -0.618.
F=100-0.618F_{1}-0.618F_{2}
Whakareatia te -1 ki te 0.618, ka -0.618.
F+F_{1}\times 0.618+F_{2}\times 0.618=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
F_{1}\times 0.618+F_{2}\times 0.618=100-F
Tangohia te F mai i ngā taha e rua.
F_{1}\times 0.618=100-F-F_{2}\times 0.618
Tangohia te F_{2}\times 0.618 mai i ngā taha e rua.
F_{1}\times 0.618=100-F-0.618F_{2}
Whakareatia te -1 ki te 0.618, ka -0.618.
0.618F_{1}=-\frac{309F_{2}}{500}-F+100
He hanga arowhānui tō te whārite.
\frac{0.618F_{1}}{0.618}=\frac{-\frac{309F_{2}}{500}-F+100}{0.618}
Whakawehea ngā taha e rua o te whārite ki te 0.618, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
F_{1}=\frac{-\frac{309F_{2}}{500}-F+100}{0.618}
Mā te whakawehe ki te 0.618 ka wetekia te whakareanga ki te 0.618.
F_{1}=-\frac{500F}{309}-F_{2}+\frac{50000}{309}
Whakawehe 100-F-\frac{309F_{2}}{500} ki te 0.618 mā te whakarea 100-F-\frac{309F_{2}}{500} ki te tau huripoki o 0.618.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}