Whakaoti mō t
t = \frac{5 \sqrt{33} - 5}{4} \approx 5.930703308
t=\frac{-5\sqrt{33}-5}{4}\approx -8.430703308
Tohaina
Kua tāruatia ki te papatopenga
5t+2t^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5t+2t^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
2t^{2}+5t-100=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-5±\sqrt{5^{2}-4\times 2\left(-100\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me -100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\times 2\left(-100\right)}}{2\times 2}
Pūrua 5.
t=\frac{-5±\sqrt{25-8\left(-100\right)}}{2\times 2}
Whakareatia -4 ki te 2.
t=\frac{-5±\sqrt{25+800}}{2\times 2}
Whakareatia -8 ki te -100.
t=\frac{-5±\sqrt{825}}{2\times 2}
Tāpiri 25 ki te 800.
t=\frac{-5±5\sqrt{33}}{2\times 2}
Tuhia te pūtakerua o te 825.
t=\frac{-5±5\sqrt{33}}{4}
Whakareatia 2 ki te 2.
t=\frac{5\sqrt{33}-5}{4}
Nā, me whakaoti te whārite t=\frac{-5±5\sqrt{33}}{4} ina he tāpiri te ±. Tāpiri -5 ki te 5\sqrt{33}.
t=\frac{-5\sqrt{33}-5}{4}
Nā, me whakaoti te whārite t=\frac{-5±5\sqrt{33}}{4} ina he tango te ±. Tango 5\sqrt{33} mai i -5.
t=\frac{5\sqrt{33}-5}{4} t=\frac{-5\sqrt{33}-5}{4}
Kua oti te whārite te whakatau.
5t+2t^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2t^{2}+5t=100
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2t^{2}+5t}{2}=\frac{100}{2}
Whakawehea ngā taha e rua ki te 2.
t^{2}+\frac{5}{2}t=\frac{100}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
t^{2}+\frac{5}{2}t=50
Whakawehe 100 ki te 2.
t^{2}+\frac{5}{2}t+\left(\frac{5}{4}\right)^{2}=50+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{5}{2}t+\frac{25}{16}=50+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+\frac{5}{2}t+\frac{25}{16}=\frac{825}{16}
Tāpiri 50 ki te \frac{25}{16}.
\left(t+\frac{5}{4}\right)^{2}=\frac{825}{16}
Tauwehea t^{2}+\frac{5}{2}t+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{4}\right)^{2}}=\sqrt{\frac{825}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{5}{4}=\frac{5\sqrt{33}}{4} t+\frac{5}{4}=-\frac{5\sqrt{33}}{4}
Whakarūnātia.
t=\frac{5\sqrt{33}-5}{4} t=\frac{-5\sqrt{33}-5}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}