Whakaoti mō a
a=\frac{29}{54}\approx 0.537037037
Tohaina
Kua tāruatia ki te papatopenga
41a-30.75=0.5a-9
Whakamahia te āhuatanga tohatoha hei whakarea te 10.25 ki te 4a-3.
41a-30.75-0.5a=-9
Tangohia te 0.5a mai i ngā taha e rua.
40.5a-30.75=-9
Pahekotia te 41a me -0.5a, ka 40.5a.
40.5a=-9+30.75
Me tāpiri te 30.75 ki ngā taha e rua.
40.5a=21.75
Tāpirihia te -9 ki te 30.75, ka 21.75.
a=\frac{21.75}{40.5}
Whakawehea ngā taha e rua ki te 40.5.
a=\frac{2175}{4050}
Whakarohaina te \frac{21.75}{40.5} mā te whakarea i te taurunga me te tauraro ki te 100.
a=\frac{29}{54}
Whakahekea te hautanga \frac{2175}{4050} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 75.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}