Whakaoti mō I
I=7
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
10-0 \cdot { 1 }^{ 2 } +12-0 \cdot 2I+13-0 \cdot 3I-5I = 0
Tohaina
Kua tāruatia ki te papatopenga
10-0\times 1+12-0\times 2I+13-0\times 3I-5I=0
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
10-0+12-0\times 2I+13-0\times 3I-5I=0
Whakareatia te 0 ki te 1, ka 0.
10+12-0\times 2I+13-0\times 3I-5I=0
Tangohia te 0 i te 10, ka 10.
22-0\times 2I+13-0\times 3I-5I=0
Tāpirihia te 10 ki te 12, ka 22.
22-0I+13-0\times 3I-5I=0
Whakareatia te 0 ki te 2, ka 0.
22-0+13-0\times 3I-5I=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
22+13-0\times 3I-5I=0
Tangohia te 0 i te 22, ka 22.
35-0\times 3I-5I=0
Tāpirihia te 22 ki te 13, ka 35.
35-0I-5I=0
Whakareatia te 0 ki te 3, ka 0.
35-0-5I=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
35-5I=0
Tangohia te 0 i te 35, ka 35.
-5I=-35
Tangohia te 35 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
I=\frac{-35}{-5}
Whakawehea ngā taha e rua ki te -5.
I=7
Whakawehea te -35 ki te -5, kia riro ko 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}