10-(-3(x-7)+5x)+40=5(4-3x
Whakaoti mō x
x=-\frac{9}{13}\approx -0.692307692
Graph
Tohaina
Kua tāruatia ki te papatopenga
10-\left(-3x+21+5x\right)+40=5\left(4-3x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-7.
10-\left(2x+21\right)+40=5\left(4-3x\right)
Pahekotia te -3x me 5x, ka 2x.
10-2x-21+40=5\left(4-3x\right)
Hei kimi i te tauaro o 2x+21, kimihia te tauaro o ia taurangi.
-11-2x+40=5\left(4-3x\right)
Tangohia te 21 i te 10, ka -11.
29-2x=5\left(4-3x\right)
Tāpirihia te -11 ki te 40, ka 29.
29-2x=20-15x
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 4-3x.
29-2x+15x=20
Me tāpiri te 15x ki ngā taha e rua.
29+13x=20
Pahekotia te -2x me 15x, ka 13x.
13x=20-29
Tangohia te 29 mai i ngā taha e rua.
13x=-9
Tangohia te 29 i te 20, ka -9.
x=\frac{-9}{13}
Whakawehea ngā taha e rua ki te 13.
x=-\frac{9}{13}
Ka taea te hautanga \frac{-9}{13} te tuhi anō ko -\frac{9}{13} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}