Aromātai
62.5
Tauwehe
\frac{5 ^ {3}}{2} = 62\frac{1}{2} = 62.5
Tohaina
Kua tāruatia ki te papatopenga
18+4+6+2+0+3+2+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 10 ki te 8, ka 18.
22+6+2+0+3+2+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 18 ki te 4, ka 22.
28+2+0+3+2+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 22 ki te 6, ka 28.
30+0+3+2+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 28 ki te 2, ka 30.
30+3+2+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 30 ki te 0, ka 30.
33+2+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 30 ki te 3, ka 33.
35+1+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 33 ki te 2, ka 35.
36+2+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 35 ki te 1, ka 36.
38+5+2+2+3+4+3+3+1.5+1
Tāpirihia te 36 ki te 2, ka 38.
43+2+2+3+4+3+3+1.5+1
Tāpirihia te 38 ki te 5, ka 43.
45+2+3+4+3+3+1.5+1
Tāpirihia te 43 ki te 2, ka 45.
47+3+4+3+3+1.5+1
Tāpirihia te 45 ki te 2, ka 47.
50+4+3+3+1.5+1
Tāpirihia te 47 ki te 3, ka 50.
54+3+3+1.5+1
Tāpirihia te 50 ki te 4, ka 54.
57+3+1.5+1
Tāpirihia te 54 ki te 3, ka 57.
60+1.5+1
Tāpirihia te 57 ki te 3, ka 60.
61.5+1
Tāpirihia te 60 ki te 1.5, ka 61.5.
62.5
Tāpirihia te 61.5 ki te 1, ka 62.5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}