Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=21 ab=10\times 2=20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10z^{2}+az+bz+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,20 2,10 4,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
1+20=21 2+10=12 4+5=9
Tātaihia te tapeke mō ia takirua.
a=1 b=20
Ko te otinga te takirua ka hoatu i te tapeke 21.
\left(10z^{2}+z\right)+\left(20z+2\right)
Tuhia anō te 10z^{2}+21z+2 hei \left(10z^{2}+z\right)+\left(20z+2\right).
z\left(10z+1\right)+2\left(10z+1\right)
Tauwehea te z i te tuatahi me te 2 i te rōpū tuarua.
\left(10z+1\right)\left(z+2\right)
Whakatauwehea atu te kīanga pātahi 10z+1 mā te whakamahi i te āhuatanga tātai tohatoha.
10z^{2}+21z+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-21±\sqrt{21^{2}-4\times 10\times 2}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-21±\sqrt{441-4\times 10\times 2}}{2\times 10}
Pūrua 21.
z=\frac{-21±\sqrt{441-40\times 2}}{2\times 10}
Whakareatia -4 ki te 10.
z=\frac{-21±\sqrt{441-80}}{2\times 10}
Whakareatia -40 ki te 2.
z=\frac{-21±\sqrt{361}}{2\times 10}
Tāpiri 441 ki te -80.
z=\frac{-21±19}{2\times 10}
Tuhia te pūtakerua o te 361.
z=\frac{-21±19}{20}
Whakareatia 2 ki te 10.
z=-\frac{2}{20}
Nā, me whakaoti te whārite z=\frac{-21±19}{20} ina he tāpiri te ±. Tāpiri -21 ki te 19.
z=-\frac{1}{10}
Whakahekea te hautanga \frac{-2}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
z=-\frac{40}{20}
Nā, me whakaoti te whārite z=\frac{-21±19}{20} ina he tango te ±. Tango 19 mai i -21.
z=-2
Whakawehe -40 ki te 20.
10z^{2}+21z+2=10\left(z-\left(-\frac{1}{10}\right)\right)\left(z-\left(-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{10} mō te x_{1} me te -2 mō te x_{2}.
10z^{2}+21z+2=10\left(z+\frac{1}{10}\right)\left(z+2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10z^{2}+21z+2=10\times \frac{10z+1}{10}\left(z+2\right)
Tāpiri \frac{1}{10} ki te z mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10z^{2}+21z+2=\left(10z+1\right)\left(z+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.