Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{10y}{25}+\frac{26y}{40}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{2}{5}y+\frac{26y}{40}
Whakawehea te 10y ki te 25, kia riro ko \frac{2}{5}y.
\frac{2}{5}y+\frac{13}{20}y
Whakawehea te 26y ki te 40, kia riro ko \frac{13}{20}y.
\frac{21}{20}y
Pahekotia te \frac{2}{5}y me \frac{13}{20}y, ka \frac{21}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10y}{25}+\frac{26y}{40})
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{26y}{40})
Whakawehea te 10y ki te 25, kia riro ko \frac{2}{5}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{13}{20}y)
Whakawehea te 26y ki te 40, kia riro ko \frac{13}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{21}{20}y)
Pahekotia te \frac{2}{5}y me \frac{13}{20}y, ka \frac{21}{20}y.
\frac{21}{20}y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{21}{20}y^{0}
Tango 1 mai i 1.
\frac{21}{20}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{21}{20}
Mō tētahi kupu t, t\times 1=t me 1t=t.