Aromātai
\frac{21y}{20}
Kimi Pārōnaki e ai ki y
\frac{21}{20} = 1\frac{1}{20} = 1.05
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{10y}{25}+\frac{26y}{40}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{2}{5}y+\frac{26y}{40}
Whakawehea te 10y ki te 25, kia riro ko \frac{2}{5}y.
\frac{2}{5}y+\frac{13}{20}y
Whakawehea te 26y ki te 40, kia riro ko \frac{13}{20}y.
\frac{21}{20}y
Pahekotia te \frac{2}{5}y me \frac{13}{20}y, ka \frac{21}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10y}{25}+\frac{26y}{40})
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{26y}{40})
Whakawehea te 10y ki te 25, kia riro ko \frac{2}{5}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{13}{20}y)
Whakawehea te 26y ki te 40, kia riro ko \frac{13}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{21}{20}y)
Pahekotia te \frac{2}{5}y me \frac{13}{20}y, ka \frac{21}{20}y.
\frac{21}{20}y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{21}{20}y^{0}
Tango 1 mai i 1.
\frac{21}{20}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{21}{20}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}