Whakaoti mō x
x=-\frac{1}{5}=-0.2
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
10xx-1=3x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
10x^{2}-1=3x
Whakareatia te x ki te x, ka x^{2}.
10x^{2}-1-3x=0
Tangohia te 3x mai i ngā taha e rua.
10x^{2}-3x-1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=10\left(-1\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 10x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(10x^{2}-5x\right)+\left(2x-1\right)
Tuhia anō te 10x^{2}-3x-1 hei \left(10x^{2}-5x\right)+\left(2x-1\right).
5x\left(2x-1\right)+2x-1
Whakatauwehea atu 5x i te 10x^{2}-5x.
\left(2x-1\right)\left(5x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=-\frac{1}{5}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te 5x+1=0.
10xx-1=3x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
10x^{2}-1=3x
Whakareatia te x ki te x, ka x^{2}.
10x^{2}-1-3x=0
Tangohia te 3x mai i ngā taha e rua.
10x^{2}-3x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10\left(-1\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -3 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 10\left(-1\right)}}{2\times 10}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-40\left(-1\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 10}
Whakareatia -40 ki te -1.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 10}
Tāpiri 9 ki te 40.
x=\frac{-\left(-3\right)±7}{2\times 10}
Tuhia te pūtakerua o te 49.
x=\frac{3±7}{2\times 10}
Ko te tauaro o -3 ko 3.
x=\frac{3±7}{20}
Whakareatia 2 ki te 10.
x=\frac{10}{20}
Nā, me whakaoti te whārite x=\frac{3±7}{20} ina he tāpiri te ±. Tāpiri 3 ki te 7.
x=\frac{1}{2}
Whakahekea te hautanga \frac{10}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{4}{20}
Nā, me whakaoti te whārite x=\frac{3±7}{20} ina he tango te ±. Tango 7 mai i 3.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-4}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{1}{2} x=-\frac{1}{5}
Kua oti te whārite te whakatau.
10xx-1=3x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
10x^{2}-1=3x
Whakareatia te x ki te x, ka x^{2}.
10x^{2}-1-3x=0
Tangohia te 3x mai i ngā taha e rua.
10x^{2}-3x=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{10x^{2}-3x}{10}=\frac{1}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}-\frac{3}{10}x=\frac{1}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-\frac{3}{10}x+\left(-\frac{3}{20}\right)^{2}=\frac{1}{10}+\left(-\frac{3}{20}\right)^{2}
Whakawehea te -\frac{3}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{20}. Nā, tāpiria te pūrua o te -\frac{3}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{10}x+\frac{9}{400}=\frac{1}{10}+\frac{9}{400}
Pūruatia -\frac{3}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{10}x+\frac{9}{400}=\frac{49}{400}
Tāpiri \frac{1}{10} ki te \frac{9}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{20}\right)^{2}=\frac{49}{400}
Tauwehea x^{2}-\frac{3}{10}x+\frac{9}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{20}\right)^{2}}=\sqrt{\frac{49}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{20}=\frac{7}{20} x-\frac{3}{20}=-\frac{7}{20}
Whakarūnātia.
x=\frac{1}{2} x=-\frac{1}{5}
Me tāpiri \frac{3}{20} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}