Tauwehe
\left(x-9\right)\left(10x+1\right)
Aromātai
\left(x-9\right)\left(10x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-89 ab=10\left(-9\right)=-90
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-90 b=1
Ko te otinga te takirua ka hoatu i te tapeke -89.
\left(10x^{2}-90x\right)+\left(x-9\right)
Tuhia anō te 10x^{2}-89x-9 hei \left(10x^{2}-90x\right)+\left(x-9\right).
10x\left(x-9\right)+x-9
Whakatauwehea atu 10x i te 10x^{2}-90x.
\left(x-9\right)\left(10x+1\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
10x^{2}-89x-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-89\right)±\sqrt{\left(-89\right)^{2}-4\times 10\left(-9\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-89\right)±\sqrt{7921-4\times 10\left(-9\right)}}{2\times 10}
Pūrua -89.
x=\frac{-\left(-89\right)±\sqrt{7921-40\left(-9\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-89\right)±\sqrt{7921+360}}{2\times 10}
Whakareatia -40 ki te -9.
x=\frac{-\left(-89\right)±\sqrt{8281}}{2\times 10}
Tāpiri 7921 ki te 360.
x=\frac{-\left(-89\right)±91}{2\times 10}
Tuhia te pūtakerua o te 8281.
x=\frac{89±91}{2\times 10}
Ko te tauaro o -89 ko 89.
x=\frac{89±91}{20}
Whakareatia 2 ki te 10.
x=\frac{180}{20}
Nā, me whakaoti te whārite x=\frac{89±91}{20} ina he tāpiri te ±. Tāpiri 89 ki te 91.
x=9
Whakawehe 180 ki te 20.
x=-\frac{2}{20}
Nā, me whakaoti te whārite x=\frac{89±91}{20} ina he tango te ±. Tango 91 mai i 89.
x=-\frac{1}{10}
Whakahekea te hautanga \frac{-2}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
10x^{2}-89x-9=10\left(x-9\right)\left(x-\left(-\frac{1}{10}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 9 mō te x_{1} me te -\frac{1}{10} mō te x_{2}.
10x^{2}-89x-9=10\left(x-9\right)\left(x+\frac{1}{10}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10x^{2}-89x-9=10\left(x-9\right)\times \frac{10x+1}{10}
Tāpiri \frac{1}{10} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10x^{2}-89x-9=\left(x-9\right)\left(10x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}