Whakaoti mō x
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x^{2}-65x+0=0
Whakareatia te 0 ki te 75, ka 0.
10x^{2}-65x=0
Ko te tau i tāpiria he kore ka hua koia tonu.
x\left(10x-65\right)=0
Tauwehea te x.
x=0 x=\frac{13}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 10x-65=0.
10x^{2}-65x+0=0
Whakareatia te 0 ki te 75, ka 0.
10x^{2}-65x=0
Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{-\left(-65\right)±\sqrt{\left(-65\right)^{2}}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -65 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-65\right)±65}{2\times 10}
Tuhia te pūtakerua o te \left(-65\right)^{2}.
x=\frac{65±65}{2\times 10}
Ko te tauaro o -65 ko 65.
x=\frac{65±65}{20}
Whakareatia 2 ki te 10.
x=\frac{130}{20}
Nā, me whakaoti te whārite x=\frac{65±65}{20} ina he tāpiri te ±. Tāpiri 65 ki te 65.
x=\frac{13}{2}
Whakahekea te hautanga \frac{130}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{0}{20}
Nā, me whakaoti te whārite x=\frac{65±65}{20} ina he tango te ±. Tango 65 mai i 65.
x=0
Whakawehe 0 ki te 20.
x=\frac{13}{2} x=0
Kua oti te whārite te whakatau.
10x^{2}-65x+0=0
Whakareatia te 0 ki te 75, ka 0.
10x^{2}-65x=0
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{10x^{2}-65x}{10}=\frac{0}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{65}{10}\right)x=\frac{0}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-\frac{13}{2}x=\frac{0}{10}
Whakahekea te hautanga \frac{-65}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{13}{2}x=0
Whakawehe 0 ki te 10.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\left(-\frac{13}{4}\right)^{2}
Whakawehea te -\frac{13}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{4}. Nā, tāpiria te pūrua o te -\frac{13}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{169}{16}
Pūruatia -\frac{13}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{13}{4}\right)^{2}=\frac{169}{16}
Tauwehea x^{2}-\frac{13}{2}x+\frac{169}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{4}=\frac{13}{4} x-\frac{13}{4}=-\frac{13}{4}
Whakarūnātia.
x=\frac{13}{2} x=0
Me tāpiri \frac{13}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}