Whakaoti mō x
x=\frac{\sqrt{145}}{20}+\frac{3}{4}\approx 1.352079729
x=-\frac{\sqrt{145}}{20}+\frac{3}{4}\approx 0.147920271
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x^{2}-15x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 10\times 2}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -15 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 10\times 2}}{2\times 10}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-40\times 2}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-15\right)±\sqrt{225-80}}{2\times 10}
Whakareatia -40 ki te 2.
x=\frac{-\left(-15\right)±\sqrt{145}}{2\times 10}
Tāpiri 225 ki te -80.
x=\frac{15±\sqrt{145}}{2\times 10}
Ko te tauaro o -15 ko 15.
x=\frac{15±\sqrt{145}}{20}
Whakareatia 2 ki te 10.
x=\frac{\sqrt{145}+15}{20}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{145}}{20} ina he tāpiri te ±. Tāpiri 15 ki te \sqrt{145}.
x=\frac{\sqrt{145}}{20}+\frac{3}{4}
Whakawehe 15+\sqrt{145} ki te 20.
x=\frac{15-\sqrt{145}}{20}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{145}}{20} ina he tango te ±. Tango \sqrt{145} mai i 15.
x=-\frac{\sqrt{145}}{20}+\frac{3}{4}
Whakawehe 15-\sqrt{145} ki te 20.
x=\frac{\sqrt{145}}{20}+\frac{3}{4} x=-\frac{\sqrt{145}}{20}+\frac{3}{4}
Kua oti te whārite te whakatau.
10x^{2}-15x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
10x^{2}-15x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
10x^{2}-15x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{10x^{2}-15x}{10}=-\frac{2}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{15}{10}\right)x=-\frac{2}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-\frac{3}{2}x=-\frac{2}{10}
Whakahekea te hautanga \frac{-15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{3}{2}x=-\frac{1}{5}
Whakahekea te hautanga \frac{-2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{5}+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{5}+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{29}{80}
Tāpiri -\frac{1}{5} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{4}\right)^{2}=\frac{29}{80}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{29}{80}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{\sqrt{145}}{20} x-\frac{3}{4}=-\frac{\sqrt{145}}{20}
Whakarūnātia.
x=\frac{\sqrt{145}}{20}+\frac{3}{4} x=-\frac{\sqrt{145}}{20}+\frac{3}{4}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}