Whakaoti mō x
x=\frac{\sqrt{31}+1}{10}\approx 0.656776436
x=\frac{1-\sqrt{31}}{10}\approx -0.456776436
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x^{2}-2x=3
Tangohia te 2x mai i ngā taha e rua.
10x^{2}-2x-3=0
Tangohia te 3 mai i ngā taha e rua.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, -2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 10\left(-3\right)}}{2\times 10}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-40\left(-3\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-\left(-2\right)±\sqrt{4+120}}{2\times 10}
Whakareatia -40 ki te -3.
x=\frac{-\left(-2\right)±\sqrt{124}}{2\times 10}
Tāpiri 4 ki te 120.
x=\frac{-\left(-2\right)±2\sqrt{31}}{2\times 10}
Tuhia te pūtakerua o te 124.
x=\frac{2±2\sqrt{31}}{2\times 10}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{31}}{20}
Whakareatia 2 ki te 10.
x=\frac{2\sqrt{31}+2}{20}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{31}}{20} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{31}.
x=\frac{\sqrt{31}+1}{10}
Whakawehe 2+2\sqrt{31} ki te 20.
x=\frac{2-2\sqrt{31}}{20}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{31}}{20} ina he tango te ±. Tango 2\sqrt{31} mai i 2.
x=\frac{1-\sqrt{31}}{10}
Whakawehe 2-2\sqrt{31} ki te 20.
x=\frac{\sqrt{31}+1}{10} x=\frac{1-\sqrt{31}}{10}
Kua oti te whārite te whakatau.
10x^{2}-2x=3
Tangohia te 2x mai i ngā taha e rua.
\frac{10x^{2}-2x}{10}=\frac{3}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{2}{10}\right)x=\frac{3}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}-\frac{1}{5}x=\frac{3}{10}
Whakahekea te hautanga \frac{-2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{3}{10}+\left(-\frac{1}{10}\right)^{2}
Whakawehea te -\frac{1}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{10}. Nā, tāpiria te pūrua o te -\frac{1}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{3}{10}+\frac{1}{100}
Pūruatia -\frac{1}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{31}{100}
Tāpiri \frac{3}{10} ki te \frac{1}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{10}\right)^{2}=\frac{31}{100}
Tauwehea x^{2}-\frac{1}{5}x+\frac{1}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{31}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{10}=\frac{\sqrt{31}}{10} x-\frac{1}{10}=-\frac{\sqrt{31}}{10}
Whakarūnātia.
x=\frac{\sqrt{31}+1}{10} x=\frac{1-\sqrt{31}}{10}
Me tāpiri \frac{1}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}