Whakaoti mō x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=\frac{4}{5}=0.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=7 ab=10\left(-12\right)=-120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 10x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-8 b=15
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(10x^{2}-8x\right)+\left(15x-12\right)
Tuhia anō te 10x^{2}+7x-12 hei \left(10x^{2}-8x\right)+\left(15x-12\right).
2x\left(5x-4\right)+3\left(5x-4\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(5x-4\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 5x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{4}{5} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 5x-4=0 me te 2x+3=0.
10x^{2}+7x-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\times 10\left(-12\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, 7 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 10\left(-12\right)}}{2\times 10}
Pūrua 7.
x=\frac{-7±\sqrt{49-40\left(-12\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{-7±\sqrt{49+480}}{2\times 10}
Whakareatia -40 ki te -12.
x=\frac{-7±\sqrt{529}}{2\times 10}
Tāpiri 49 ki te 480.
x=\frac{-7±23}{2\times 10}
Tuhia te pūtakerua o te 529.
x=\frac{-7±23}{20}
Whakareatia 2 ki te 10.
x=\frac{16}{20}
Nā, me whakaoti te whārite x=\frac{-7±23}{20} ina he tāpiri te ±. Tāpiri -7 ki te 23.
x=\frac{4}{5}
Whakahekea te hautanga \frac{16}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{30}{20}
Nā, me whakaoti te whārite x=\frac{-7±23}{20} ina he tango te ±. Tango 23 mai i -7.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-30}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{4}{5} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
10x^{2}+7x-12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
10x^{2}+7x-12-\left(-12\right)=-\left(-12\right)
Me tāpiri 12 ki ngā taha e rua o te whārite.
10x^{2}+7x=-\left(-12\right)
Mā te tango i te -12 i a ia ake anō ka toe ko te 0.
10x^{2}+7x=12
Tango -12 mai i 0.
\frac{10x^{2}+7x}{10}=\frac{12}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}+\frac{7}{10}x=\frac{12}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
x^{2}+\frac{7}{10}x=\frac{6}{5}
Whakahekea te hautanga \frac{12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{7}{10}x+\left(\frac{7}{20}\right)^{2}=\frac{6}{5}+\left(\frac{7}{20}\right)^{2}
Whakawehea te \frac{7}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{20}. Nā, tāpiria te pūrua o te \frac{7}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{7}{10}x+\frac{49}{400}=\frac{6}{5}+\frac{49}{400}
Pūruatia \frac{7}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{7}{10}x+\frac{49}{400}=\frac{529}{400}
Tāpiri \frac{6}{5} ki te \frac{49}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{20}\right)^{2}=\frac{529}{400}
Tauwehea x^{2}+\frac{7}{10}x+\frac{49}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{20}\right)^{2}}=\sqrt{\frac{529}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{20}=\frac{23}{20} x+\frac{7}{20}=-\frac{23}{20}
Whakarūnātia.
x=\frac{4}{5} x=-\frac{3}{2}
Me tango \frac{7}{20} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}