Whakaoti mō t
t=\frac{5}{7}\approx 0.714285714
t=0
Tohaina
Kua tāruatia ki te papatopenga
t\left(10-14t\right)=0
Tauwehea te t.
t=0 t=\frac{5}{7}
Hei kimi otinga whārite, me whakaoti te t=0 me te 10-14t=0.
-14t^{2}+10t=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-10±\sqrt{10^{2}}}{2\left(-14\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -14 mō a, 10 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±10}{2\left(-14\right)}
Tuhia te pūtakerua o te 10^{2}.
t=\frac{-10±10}{-28}
Whakareatia 2 ki te -14.
t=\frac{0}{-28}
Nā, me whakaoti te whārite t=\frac{-10±10}{-28} ina he tāpiri te ±. Tāpiri -10 ki te 10.
t=0
Whakawehe 0 ki te -28.
t=-\frac{20}{-28}
Nā, me whakaoti te whārite t=\frac{-10±10}{-28} ina he tango te ±. Tango 10 mai i -10.
t=\frac{5}{7}
Whakahekea te hautanga \frac{-20}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
t=0 t=\frac{5}{7}
Kua oti te whārite te whakatau.
-14t^{2}+10t=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-14t^{2}+10t}{-14}=\frac{0}{-14}
Whakawehea ngā taha e rua ki te -14.
t^{2}+\frac{10}{-14}t=\frac{0}{-14}
Mā te whakawehe ki te -14 ka wetekia te whakareanga ki te -14.
t^{2}-\frac{5}{7}t=\frac{0}{-14}
Whakahekea te hautanga \frac{10}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t^{2}-\frac{5}{7}t=0
Whakawehe 0 ki te -14.
t^{2}-\frac{5}{7}t+\left(-\frac{5}{14}\right)^{2}=\left(-\frac{5}{14}\right)^{2}
Whakawehea te -\frac{5}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{14}. Nā, tāpiria te pūrua o te -\frac{5}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{5}{7}t+\frac{25}{196}=\frac{25}{196}
Pūruatia -\frac{5}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t-\frac{5}{14}\right)^{2}=\frac{25}{196}
Tauwehea t^{2}-\frac{5}{7}t+\frac{25}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{14}\right)^{2}}=\sqrt{\frac{25}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{5}{14}=\frac{5}{14} t-\frac{5}{14}=-\frac{5}{14}
Whakarūnātia.
t=\frac{5}{7} t=0
Me tāpiri \frac{5}{14} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}