Tauwehe
\left(5s-3\right)\left(2s+5\right)
Aromātai
\left(5s-3\right)\left(2s+5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=19 ab=10\left(-15\right)=-150
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10s^{2}+as+bs-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,150 -2,75 -3,50 -5,30 -6,25 -10,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -150.
-1+150=149 -2+75=73 -3+50=47 -5+30=25 -6+25=19 -10+15=5
Tātaihia te tapeke mō ia takirua.
a=-6 b=25
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(10s^{2}-6s\right)+\left(25s-15\right)
Tuhia anō te 10s^{2}+19s-15 hei \left(10s^{2}-6s\right)+\left(25s-15\right).
2s\left(5s-3\right)+5\left(5s-3\right)
Tauwehea te 2s i te tuatahi me te 5 i te rōpū tuarua.
\left(5s-3\right)\left(2s+5\right)
Whakatauwehea atu te kīanga pātahi 5s-3 mā te whakamahi i te āhuatanga tātai tohatoha.
10s^{2}+19s-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-19±\sqrt{19^{2}-4\times 10\left(-15\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-19±\sqrt{361-4\times 10\left(-15\right)}}{2\times 10}
Pūrua 19.
s=\frac{-19±\sqrt{361-40\left(-15\right)}}{2\times 10}
Whakareatia -4 ki te 10.
s=\frac{-19±\sqrt{361+600}}{2\times 10}
Whakareatia -40 ki te -15.
s=\frac{-19±\sqrt{961}}{2\times 10}
Tāpiri 361 ki te 600.
s=\frac{-19±31}{2\times 10}
Tuhia te pūtakerua o te 961.
s=\frac{-19±31}{20}
Whakareatia 2 ki te 10.
s=\frac{12}{20}
Nā, me whakaoti te whārite s=\frac{-19±31}{20} ina he tāpiri te ±. Tāpiri -19 ki te 31.
s=\frac{3}{5}
Whakahekea te hautanga \frac{12}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
s=-\frac{50}{20}
Nā, me whakaoti te whārite s=\frac{-19±31}{20} ina he tango te ±. Tango 31 mai i -19.
s=-\frac{5}{2}
Whakahekea te hautanga \frac{-50}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
10s^{2}+19s-15=10\left(s-\frac{3}{5}\right)\left(s-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{5} mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
10s^{2}+19s-15=10\left(s-\frac{3}{5}\right)\left(s+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10s^{2}+19s-15=10\times \frac{5s-3}{5}\left(s+\frac{5}{2}\right)
Tango \frac{3}{5} mai i s mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10s^{2}+19s-15=10\times \frac{5s-3}{5}\times \frac{2s+5}{2}
Tāpiri \frac{5}{2} ki te s mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10s^{2}+19s-15=10\times \frac{\left(5s-3\right)\left(2s+5\right)}{5\times 2}
Whakareatia \frac{5s-3}{5} ki te \frac{2s+5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10s^{2}+19s-15=10\times \frac{\left(5s-3\right)\left(2s+5\right)}{10}
Whakareatia 5 ki te 2.
10s^{2}+19s-15=\left(5s-3\right)\left(2s+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}