Tauwehe
\left(m-1\right)\left(10m+9\right)
Aromātai
\left(m-1\right)\left(10m+9\right)
Pātaitai
Polynomial
10 m ^ { 2 } - m - 9
Tohaina
Kua tāruatia ki te papatopenga
a+b=-1 ab=10\left(-9\right)=-90
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10m^{2}+am+bm-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=9
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(10m^{2}-10m\right)+\left(9m-9\right)
Tuhia anō te 10m^{2}-m-9 hei \left(10m^{2}-10m\right)+\left(9m-9\right).
10m\left(m-1\right)+9\left(m-1\right)
Tauwehea te 10m i te tuatahi me te 9 i te rōpū tuarua.
\left(m-1\right)\left(10m+9\right)
Whakatauwehea atu te kīanga pātahi m-1 mā te whakamahi i te āhuatanga tātai tohatoha.
10m^{2}-m-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-1\right)±\sqrt{1-4\times 10\left(-9\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-1\right)±\sqrt{1-40\left(-9\right)}}{2\times 10}
Whakareatia -4 ki te 10.
m=\frac{-\left(-1\right)±\sqrt{1+360}}{2\times 10}
Whakareatia -40 ki te -9.
m=\frac{-\left(-1\right)±\sqrt{361}}{2\times 10}
Tāpiri 1 ki te 360.
m=\frac{-\left(-1\right)±19}{2\times 10}
Tuhia te pūtakerua o te 361.
m=\frac{1±19}{2\times 10}
Ko te tauaro o -1 ko 1.
m=\frac{1±19}{20}
Whakareatia 2 ki te 10.
m=\frac{20}{20}
Nā, me whakaoti te whārite m=\frac{1±19}{20} ina he tāpiri te ±. Tāpiri 1 ki te 19.
m=1
Whakawehe 20 ki te 20.
m=-\frac{18}{20}
Nā, me whakaoti te whārite m=\frac{1±19}{20} ina he tango te ±. Tango 19 mai i 1.
m=-\frac{9}{10}
Whakahekea te hautanga \frac{-18}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
10m^{2}-m-9=10\left(m-1\right)\left(m-\left(-\frac{9}{10}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -\frac{9}{10} mō te x_{2}.
10m^{2}-m-9=10\left(m-1\right)\left(m+\frac{9}{10}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10m^{2}-m-9=10\left(m-1\right)\times \frac{10m+9}{10}
Tāpiri \frac{9}{10} ki te m mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10m^{2}-m-9=\left(m-1\right)\left(10m+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}