Tauwehe
\left(2c-5\right)\left(5c+3\right)
Aromātai
\left(2c-5\right)\left(5c+3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-19 ab=10\left(-15\right)=-150
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10c^{2}+ac+bc-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-150 2,-75 3,-50 5,-30 6,-25 10,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -150.
1-150=-149 2-75=-73 3-50=-47 5-30=-25 6-25=-19 10-15=-5
Tātaihia te tapeke mō ia takirua.
a=-25 b=6
Ko te otinga te takirua ka hoatu i te tapeke -19.
\left(10c^{2}-25c\right)+\left(6c-15\right)
Tuhia anō te 10c^{2}-19c-15 hei \left(10c^{2}-25c\right)+\left(6c-15\right).
5c\left(2c-5\right)+3\left(2c-5\right)
Tauwehea te 5c i te tuatahi me te 3 i te rōpū tuarua.
\left(2c-5\right)\left(5c+3\right)
Whakatauwehea atu te kīanga pātahi 2c-5 mā te whakamahi i te āhuatanga tātai tohatoha.
10c^{2}-19c-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 10\left(-15\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-\left(-19\right)±\sqrt{361-4\times 10\left(-15\right)}}{2\times 10}
Pūrua -19.
c=\frac{-\left(-19\right)±\sqrt{361-40\left(-15\right)}}{2\times 10}
Whakareatia -4 ki te 10.
c=\frac{-\left(-19\right)±\sqrt{361+600}}{2\times 10}
Whakareatia -40 ki te -15.
c=\frac{-\left(-19\right)±\sqrt{961}}{2\times 10}
Tāpiri 361 ki te 600.
c=\frac{-\left(-19\right)±31}{2\times 10}
Tuhia te pūtakerua o te 961.
c=\frac{19±31}{2\times 10}
Ko te tauaro o -19 ko 19.
c=\frac{19±31}{20}
Whakareatia 2 ki te 10.
c=\frac{50}{20}
Nā, me whakaoti te whārite c=\frac{19±31}{20} ina he tāpiri te ±. Tāpiri 19 ki te 31.
c=\frac{5}{2}
Whakahekea te hautanga \frac{50}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
c=-\frac{12}{20}
Nā, me whakaoti te whārite c=\frac{19±31}{20} ina he tango te ±. Tango 31 mai i 19.
c=-\frac{3}{5}
Whakahekea te hautanga \frac{-12}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
10c^{2}-19c-15=10\left(c-\frac{5}{2}\right)\left(c-\left(-\frac{3}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{2} mō te x_{1} me te -\frac{3}{5} mō te x_{2}.
10c^{2}-19c-15=10\left(c-\frac{5}{2}\right)\left(c+\frac{3}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10c^{2}-19c-15=10\times \frac{2c-5}{2}\left(c+\frac{3}{5}\right)
Tango \frac{5}{2} mai i c mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10c^{2}-19c-15=10\times \frac{2c-5}{2}\times \frac{5c+3}{5}
Tāpiri \frac{3}{5} ki te c mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10c^{2}-19c-15=10\times \frac{\left(2c-5\right)\left(5c+3\right)}{2\times 5}
Whakareatia \frac{2c-5}{2} ki te \frac{5c+3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10c^{2}-19c-15=10\times \frac{\left(2c-5\right)\left(5c+3\right)}{10}
Whakareatia 2 ki te 5.
10c^{2}-19c-15=\left(2c-5\right)\left(5c+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}