Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5\left(2c^{2}+5c\right)
Tauwehea te 5.
c\left(2c+5\right)
Whakaarohia te 2c^{2}+5c. Tauwehea te c.
5c\left(2c+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
10c^{2}+25c=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-25±\sqrt{25^{2}}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-25±25}{2\times 10}
Tuhia te pūtakerua o te 25^{2}.
c=\frac{-25±25}{20}
Whakareatia 2 ki te 10.
c=\frac{0}{20}
Nā, me whakaoti te whārite c=\frac{-25±25}{20} ina he tāpiri te ±. Tāpiri -25 ki te 25.
c=0
Whakawehe 0 ki te 20.
c=-\frac{50}{20}
Nā, me whakaoti te whārite c=\frac{-25±25}{20} ina he tango te ±. Tango 25 mai i -25.
c=-\frac{5}{2}
Whakahekea te hautanga \frac{-50}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
10c^{2}+25c=10c\left(c-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
10c^{2}+25c=10c\left(c+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10c^{2}+25c=10c\times \frac{2c+5}{2}
Tāpiri \frac{5}{2} ki te c mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10c^{2}+25c=5c\left(2c+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 10 me te 2.