Tauwehe
\left(2a-3\right)\left(5a+1\right)
Aromātai
\left(2a-3\right)\left(5a+1\right)
Tohaina
Kua tāruatia ki te papatopenga
p+q=-13 pq=10\left(-3\right)=-30
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10a^{2}+pa+qa-3. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-30 2,-15 3,-10 5,-6
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Tātaihia te tapeke mō ia takirua.
p=-15 q=2
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(10a^{2}-15a\right)+\left(2a-3\right)
Tuhia anō te 10a^{2}-13a-3 hei \left(10a^{2}-15a\right)+\left(2a-3\right).
5a\left(2a-3\right)+2a-3
Whakatauwehea atu 5a i te 10a^{2}-15a.
\left(2a-3\right)\left(5a+1\right)
Whakatauwehea atu te kīanga pātahi 2a-3 mā te whakamahi i te āhuatanga tātai tohatoha.
10a^{2}-13a-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-13\right)±\sqrt{169-4\times 10\left(-3\right)}}{2\times 10}
Pūrua -13.
a=\frac{-\left(-13\right)±\sqrt{169-40\left(-3\right)}}{2\times 10}
Whakareatia -4 ki te 10.
a=\frac{-\left(-13\right)±\sqrt{169+120}}{2\times 10}
Whakareatia -40 ki te -3.
a=\frac{-\left(-13\right)±\sqrt{289}}{2\times 10}
Tāpiri 169 ki te 120.
a=\frac{-\left(-13\right)±17}{2\times 10}
Tuhia te pūtakerua o te 289.
a=\frac{13±17}{2\times 10}
Ko te tauaro o -13 ko 13.
a=\frac{13±17}{20}
Whakareatia 2 ki te 10.
a=\frac{30}{20}
Nā, me whakaoti te whārite a=\frac{13±17}{20} ina he tāpiri te ±. Tāpiri 13 ki te 17.
a=\frac{3}{2}
Whakahekea te hautanga \frac{30}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
a=-\frac{4}{20}
Nā, me whakaoti te whārite a=\frac{13±17}{20} ina he tango te ±. Tango 17 mai i 13.
a=-\frac{1}{5}
Whakahekea te hautanga \frac{-4}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
10a^{2}-13a-3=10\left(a-\frac{3}{2}\right)\left(a-\left(-\frac{1}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te -\frac{1}{5} mō te x_{2}.
10a^{2}-13a-3=10\left(a-\frac{3}{2}\right)\left(a+\frac{1}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10a^{2}-13a-3=10\times \frac{2a-3}{2}\left(a+\frac{1}{5}\right)
Tango \frac{3}{2} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10a^{2}-13a-3=10\times \frac{2a-3}{2}\times \frac{5a+1}{5}
Tāpiri \frac{1}{5} ki te a mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10a^{2}-13a-3=10\times \frac{\left(2a-3\right)\left(5a+1\right)}{2\times 5}
Whakareatia \frac{2a-3}{2} ki te \frac{5a+1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10a^{2}-13a-3=10\times \frac{\left(2a-3\right)\left(5a+1\right)}{10}
Whakareatia 2 ki te 5.
10a^{2}-13a-3=\left(2a-3\right)\left(5a+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}