Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
10-\frac{1}{3}-18=1
Whakahekea te hautanga \frac{7}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{30}{3}-\frac{1}{3}-18=1
Me tahuri te 10 ki te hautau \frac{30}{3}.
\frac{30-1}{3}-18=1
Tā te mea he rite te tauraro o \frac{30}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{29}{3}-18=1
Tangohia te 1 i te 30, ka 29.
\frac{29}{3}-\frac{54}{3}=1
Me tahuri te 18 ki te hautau \frac{54}{3}.
\frac{29-54}{3}=1
Tā te mea he rite te tauraro o \frac{29}{3} me \frac{54}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{25}{3}=1
Tangohia te 54 i te 29, ka -25.
-\frac{25}{3}=\frac{3}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\text{false}
Whakatauritea te -\frac{25}{3} me te \frac{3}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}