Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
10-4-\left(-3x\right)+5x=6\left(2x-1\right)+8
Hei kimi i te tauaro o 4-3x, kimihia te tauaro o ia taurangi.
10-4+3x+5x=6\left(2x-1\right)+8
Ko te tauaro o -3x ko 3x.
6+3x+5x=6\left(2x-1\right)+8
Tangohia te 4 i te 10, ka 6.
6+8x=6\left(2x-1\right)+8
Pahekotia te 3x me 5x, ka 8x.
6+8x=12x-6+8
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-1.
6+8x=12x+2
Tāpirihia te -6 ki te 8, ka 2.
6+8x-12x=2
Tangohia te 12x mai i ngā taha e rua.
6-4x=2
Pahekotia te 8x me -12x, ka -4x.
-4x=2-6
Tangohia te 6 mai i ngā taha e rua.
-4x=-4
Tangohia te 6 i te 2, ka -4.
x=\frac{-4}{-4}
Whakawehea ngā taha e rua ki te -4.
x=1
Whakawehea te -4 ki te -4, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}