Aromātai
-\frac{285}{8}=-35.625
Tauwehe
-\frac{285}{8} = -35\frac{5}{8} = -35.625
Tohaina
Kua tāruatia ki te papatopenga
10-\left(35+\frac{40}{8}\right)-\frac{9\times 5}{4\times 2}
Whakareatia te 7 ki te 5, ka 35.
10-\left(35+5\right)-\frac{9\times 5}{4\times 2}
Whakawehea te 40 ki te 8, kia riro ko 5.
10-40-\frac{9\times 5}{4\times 2}
Tāpirihia te 35 ki te 5, ka 40.
-30-\frac{9\times 5}{4\times 2}
Tangohia te 40 i te 10, ka -30.
-30-\frac{45}{4\times 2}
Whakareatia te 9 ki te 5, ka 45.
-30-\frac{45}{8}
Whakareatia te 4 ki te 2, ka 8.
-\frac{240}{8}-\frac{45}{8}
Me tahuri te -30 ki te hautau -\frac{240}{8}.
\frac{-240-45}{8}
Tā te mea he rite te tauraro o -\frac{240}{8} me \frac{45}{8}, me tango rāua mā te tango i ō raua taurunga.
-\frac{285}{8}
Tangohia te 45 i te -240, ka -285.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}