Whakaoti mō x
x=-15
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\times 18=x\left(3+x\right)
Tāpirihia te 10 ki te 8, ka 18.
180=x\left(3+x\right)
Whakareatia te 10 ki te 18, ka 180.
180=3x+x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3+x.
3x+x^{2}=180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+x^{2}-180=0
Tangohia te 180 mai i ngā taha e rua.
x^{2}+3x-180=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
Pūrua 3.
x=\frac{-3±\sqrt{9+720}}{2}
Whakareatia -4 ki te -180.
x=\frac{-3±\sqrt{729}}{2}
Tāpiri 9 ki te 720.
x=\frac{-3±27}{2}
Tuhia te pūtakerua o te 729.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{-3±27}{2} ina he tāpiri te ±. Tāpiri -3 ki te 27.
x=12
Whakawehe 24 ki te 2.
x=-\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{-3±27}{2} ina he tango te ±. Tango 27 mai i -3.
x=-15
Whakawehe -30 ki te 2.
x=12 x=-15
Kua oti te whārite te whakatau.
10\times 18=x\left(3+x\right)
Tāpirihia te 10 ki te 8, ka 18.
180=x\left(3+x\right)
Whakareatia te 10 ki te 18, ka 180.
180=3x+x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3+x.
3x+x^{2}=180
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+3x=180
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
Tāpiri 180 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
Whakarūnātia.
x=12 x=-15
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}