Tauwehe
\left(2y+3\right)\left(5y+2\right)
Aromātai
\left(2y+3\right)\left(5y+2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=19 ab=10\times 6=60
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 10y^{2}+ay+by+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,60 2,30 3,20 4,15 5,12 6,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Tātaihia te tapeke mō ia takirua.
a=4 b=15
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(10y^{2}+4y\right)+\left(15y+6\right)
Tuhia anō te 10y^{2}+19y+6 hei \left(10y^{2}+4y\right)+\left(15y+6\right).
2y\left(5y+2\right)+3\left(5y+2\right)
Tauwehea te 2y i te tuatahi me te 3 i te rōpū tuarua.
\left(5y+2\right)\left(2y+3\right)
Whakatauwehea atu te kīanga pātahi 5y+2 mā te whakamahi i te āhuatanga tātai tohatoha.
10y^{2}+19y+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-19±\sqrt{19^{2}-4\times 10\times 6}}{2\times 10}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-19±\sqrt{361-4\times 10\times 6}}{2\times 10}
Pūrua 19.
y=\frac{-19±\sqrt{361-40\times 6}}{2\times 10}
Whakareatia -4 ki te 10.
y=\frac{-19±\sqrt{361-240}}{2\times 10}
Whakareatia -40 ki te 6.
y=\frac{-19±\sqrt{121}}{2\times 10}
Tāpiri 361 ki te -240.
y=\frac{-19±11}{2\times 10}
Tuhia te pūtakerua o te 121.
y=\frac{-19±11}{20}
Whakareatia 2 ki te 10.
y=-\frac{8}{20}
Nā, me whakaoti te whārite y=\frac{-19±11}{20} ina he tāpiri te ±. Tāpiri -19 ki te 11.
y=-\frac{2}{5}
Whakahekea te hautanga \frac{-8}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y=-\frac{30}{20}
Nā, me whakaoti te whārite y=\frac{-19±11}{20} ina he tango te ±. Tango 11 mai i -19.
y=-\frac{3}{2}
Whakahekea te hautanga \frac{-30}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
10y^{2}+19y+6=10\left(y-\left(-\frac{2}{5}\right)\right)\left(y-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{5} mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
10y^{2}+19y+6=10\left(y+\frac{2}{5}\right)\left(y+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
10y^{2}+19y+6=10\times \frac{5y+2}{5}\left(y+\frac{3}{2}\right)
Tāpiri \frac{2}{5} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10y^{2}+19y+6=10\times \frac{5y+2}{5}\times \frac{2y+3}{2}
Tāpiri \frac{3}{2} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10y^{2}+19y+6=10\times \frac{\left(5y+2\right)\left(2y+3\right)}{5\times 2}
Whakareatia \frac{5y+2}{5} ki te \frac{2y+3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10y^{2}+19y+6=10\times \frac{\left(5y+2\right)\left(2y+3\right)}{10}
Whakareatia 5 ki te 2.
10y^{2}+19y+6=\left(5y+2\right)\left(2y+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}