Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10x^{2}-11x+9-13x=-6x^{2}
Tangohia te 13x mai i ngā taha e rua.
10x^{2}-24x+9=-6x^{2}
Pahekotia te -11x me -13x, ka -24x.
10x^{2}-24x+9+6x^{2}=0
Me tāpiri te 6x^{2} ki ngā taha e rua.
16x^{2}-24x+9=0
Pahekotia te 10x^{2} me 6x^{2}, ka 16x^{2}.
a+b=-24 ab=16\times 9=144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 16x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Tātaihia te tapeke mō ia takirua.
a=-12 b=-12
Ko te otinga te takirua ka hoatu i te tapeke -24.
\left(16x^{2}-12x\right)+\left(-12x+9\right)
Tuhia anō te 16x^{2}-24x+9 hei \left(16x^{2}-12x\right)+\left(-12x+9\right).
4x\left(4x-3\right)-3\left(4x-3\right)
Tauwehea te 4x i te tuatahi me te -3 i te rōpū tuarua.
\left(4x-3\right)\left(4x-3\right)
Whakatauwehea atu te kīanga pātahi 4x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(4x-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=\frac{3}{4}
Hei kimi i te otinga whārite, whakaotia te 4x-3=0.
10x^{2}-11x+9-13x=-6x^{2}
Tangohia te 13x mai i ngā taha e rua.
10x^{2}-24x+9=-6x^{2}
Pahekotia te -11x me -13x, ka -24x.
10x^{2}-24x+9+6x^{2}=0
Me tāpiri te 6x^{2} ki ngā taha e rua.
16x^{2}-24x+9=0
Pahekotia te 10x^{2} me 6x^{2}, ka 16x^{2}.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\times 9}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, -24 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 16\times 9}}{2\times 16}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576-64\times 9}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-\left(-24\right)±\sqrt{576-576}}{2\times 16}
Whakareatia -64 ki te 9.
x=\frac{-\left(-24\right)±\sqrt{0}}{2\times 16}
Tāpiri 576 ki te -576.
x=-\frac{-24}{2\times 16}
Tuhia te pūtakerua o te 0.
x=\frac{24}{2\times 16}
Ko te tauaro o -24 ko 24.
x=\frac{24}{32}
Whakareatia 2 ki te 16.
x=\frac{3}{4}
Whakahekea te hautanga \frac{24}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
10x^{2}-11x+9-13x=-6x^{2}
Tangohia te 13x mai i ngā taha e rua.
10x^{2}-24x+9=-6x^{2}
Pahekotia te -11x me -13x, ka -24x.
10x^{2}-24x+9+6x^{2}=0
Me tāpiri te 6x^{2} ki ngā taha e rua.
16x^{2}-24x+9=0
Pahekotia te 10x^{2} me 6x^{2}, ka 16x^{2}.
16x^{2}-24x=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{16x^{2}-24x}{16}=-\frac{9}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\left(-\frac{24}{16}\right)x=-\frac{9}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}-\frac{3}{2}x=-\frac{9}{16}
Whakahekea te hautanga \frac{-24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{9}{16}+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{-9+9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=0
Tāpiri -\frac{9}{16} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{4}\right)^{2}=0
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=0 x-\frac{3}{4}=0
Whakarūnātia.
x=\frac{3}{4} x=\frac{3}{4}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.
x=\frac{3}{4}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.