Whakaoti mō x
x=3\sqrt{7}\approx 7.937253933
x=-3\sqrt{7}\approx -7.937253933
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x^{2}=633-3
Tangohia te 3 mai i ngā taha e rua.
10x^{2}=630
Tangohia te 3 i te 633, ka 630.
x^{2}=\frac{630}{10}
Whakawehea ngā taha e rua ki te 10.
x^{2}=63
Whakawehea te 630 ki te 10, kia riro ko 63.
x=3\sqrt{7} x=-3\sqrt{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
10x^{2}+3-633=0
Tangohia te 633 mai i ngā taha e rua.
10x^{2}-630=0
Tangohia te 633 i te 3, ka -630.
x=\frac{0±\sqrt{0^{2}-4\times 10\left(-630\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, 0 mō b, me -630 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 10\left(-630\right)}}{2\times 10}
Pūrua 0.
x=\frac{0±\sqrt{-40\left(-630\right)}}{2\times 10}
Whakareatia -4 ki te 10.
x=\frac{0±\sqrt{25200}}{2\times 10}
Whakareatia -40 ki te -630.
x=\frac{0±60\sqrt{7}}{2\times 10}
Tuhia te pūtakerua o te 25200.
x=\frac{0±60\sqrt{7}}{20}
Whakareatia 2 ki te 10.
x=3\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±60\sqrt{7}}{20} ina he tāpiri te ±.
x=-3\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±60\sqrt{7}}{20} ina he tango te ±.
x=3\sqrt{7} x=-3\sqrt{7}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}